首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8189篇
  免费   588篇
  国内免费   739篇
  9516篇
  2024年   26篇
  2023年   102篇
  2022年   263篇
  2021年   419篇
  2020年   315篇
  2019年   363篇
  2018年   333篇
  2017年   279篇
  2016年   375篇
  2015年   517篇
  2014年   589篇
  2013年   647篇
  2012年   802篇
  2011年   671篇
  2010年   396篇
  2009年   384篇
  2008年   410篇
  2007年   357篇
  2006年   320篇
  2005年   249篇
  2004年   226篇
  2003年   201篇
  2002年   177篇
  2001年   180篇
  2000年   127篇
  1999年   115篇
  1998年   84篇
  1997年   85篇
  1996年   74篇
  1995年   57篇
  1994年   54篇
  1993年   33篇
  1992年   50篇
  1991年   26篇
  1990年   35篇
  1989年   25篇
  1988年   19篇
  1987年   21篇
  1986年   13篇
  1985年   22篇
  1984年   14篇
  1983年   9篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1978年   5篇
  1968年   4篇
  1967年   4篇
  1966年   3篇
  1965年   3篇
排序方式: 共有9516条查询结果,搜索用时 15 毫秒
121.
[目的]雄蜂对蜂群繁衍有着非常重要的作用.本研究旨在探究吡虫啉对意大利蜜蜂Apis mellifera Ligustica雄蜂生长发育和基因表达产生的影响.[方法]以意大利蜜蜂雄蜂为研究对象,分别以0.00001、0.0001和0.001 μg/μL浓度的吡虫啉对雄蜂幼虫进行连续饲喂处理.每天观察并记录幼虫的发育形态及死亡率,在雄蜂幼虫后期(移虫后6d)测量幼虫体重.利用Illumina HiSeq测序技术对经吡虫啉处理的雄蜂进行转录组测序,进而对差异表达基因进行深入分析.[结果]取食吡虫啉后的雄蜂幼虫,体重低于正常雄蜂,当浓度高于0.0001μg/μL时差异显著;雄蜂幼虫取食吡虫啉后出现死亡现象,且死亡率随吡虫啉浓度的升高而增大;差异表达基因分析结果上调与下调基因数量分别为390个和130个.GO富集分析结果上调基因共分布于55个GO条目,富集基因数量最多的是细胞进程、细胞、细胞组件、细胞膜、细胞膜组件、结合,下调基因共分布于48个GO条目,富集基因数量最多的是细胞进程、细胞、细胞组件.富集在有关生殖功能的差异表达基因中,上调基因数量为21个,下调基因数量为5个.KEGG代谢通路富集分析结果上调基因富集在159个通路上,其中富集基因数最多的是蛋白质消化吸收和神经活性配体-受体相互作用通路.下调基因富集在71个通路上,其中富集基因数最多的是溶酶体、胰液分泌、神经活性配体-受体相互作用通路.[结论]吡虫啉能抑制意大利蜜蜂雄蜂的生长发育,甚至造成幼虫死亡,同时,可以影响雄蜂的神经系统、代谢系统和生殖系统等.本研究结果为蜜蜂资源保护提供理论依据.  相似文献   
122.
123.
We report the synthesis and evaluation of a series of fluoro-oligo-ethoxylated 4-benzylpiperazine derivatives as potential σ1 receptor ligands. In vitro competition binding assays showed that 1-(1,3-benzodioxol-5-ylmethyl)-4-(4-(2-fluoroethoxy)benzyl)piperazine (6) exhibits low nanomolar affinity for σ1 receptors (Ki = 1.85 ± 1.59 nM) and high subtype selectivity (σ2 receptor: Ki = 291 ± 111 nM; Kiσ2/Kiσ1 = 157). [18F]6 was prepared in 30–50% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via nucleophilic 18F? substitution of the corresponding tosylate precursor. The log DpH 7.4 value of [18F]6 was found to be 2.57 ± 0.10, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiotracers in organs known to contain σ1 receptors, including the brain, lungs, kidneys, heart, and spleen. Administration of haloperidol 5 min prior to injection of [18F]6 significantly reduced the concentration of radiotracers in the above-mentioned organs. The accumulation of radiotracers in the bone was quite low suggesting that [18F]6 is relatively stable to in vivo defluorination. The ex vivo autoradiography in rat brain showed high accumulation of radiotracers in the brain areas known to possess high expression of σ1 receptors. These findings suggest that [18F]6 is a suitable radiotracer for imaging σ1 receptors with PET in vivo.  相似文献   
124.
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.  相似文献   
125.
Two mononuclear copper(II) complexes, [Cu(C(15)H(16)NO(2))(2)] (1) and [Cu(C(6)H(9)N(2)O(4))(2)·3H(2)O] (2·3H(2)O), were synthesised and structurally characterised by single-crystal X-ray analysis. The copper(II) atom adopts a square-planar environment in complex 1, while the geometry in 2·3H(2)O could be described as the distorted square pyramidal. Complexes 1 and 2·3H(2)O were evaluated for their inhibitory activities against Helicobacter pylori (H. pylori) urease in vitro. They both were found to have strong inhibitory activities against H. pylori urease comparable to that of acetohydroxamic acid (AHA). A docking simulation was performed to position 2 into the H. pylori urease active site to determine the probable binding conformation.  相似文献   
126.
Calcium through NMDA receptors (NMDARs) is necessary for the long-term potentiation (LTP) of synaptic strength; however, NMDARs differ in several properties that can influence the amount of calcium influx into the spine. These properties, such as sensitivity to magnesium block and conductance decay kinetics, change the receptor's response to spike timing dependent plasticity (STDP) protocols, and thereby shape synaptic integration and information processing. This study investigates the role of GluN2 subunit differences on spine calcium concentration during several STDP protocols in a model of a striatal medium spiny projection neuron (MSPN). The multi-compartment, multi-channel model exhibits firing frequency, spike width, and latency to first spike similar to current clamp data from mouse dorsal striatum MSPN. We find that NMDAR-mediated calcium is dependent on GluN2 subunit type, action potential timing, duration of somatic depolarization, and number of action potentials. Furthermore, the model demonstrates that in MSPNs, GluN2A and GluN2B control which STDP intervals allow for substantial calcium elevation in spines. The model predicts that blocking GluN2B subunits would modulate the range of intervals that cause long term potentiation. We confirmed this prediction experimentally, demonstrating that blocking GluN2B in the striatum, narrows the range of STDP intervals that cause long term potentiation. This ability of the GluN2 subunit to modulate the shape of the STDP curve could underlie the role that GluN2 subunits play in learning and development.  相似文献   
127.
Polyamines regulate multiple signaling pathways and are implicated in many aspects of cellular functions, but the exact molecular processes governed by polyamines remain largely unknown. In response to environmental stress, repression of translation is associated with the assembly of stress granules (SGs) that contain a fraction of arrested mRNAs and are thought to function as mRNA storage. Here we show that polyamines modulate the assembly of SGs in normal intestinal epithelial cells (IECs) and that induced SGs following polyamine depletion are implicated in the protection of IECs against apoptosis. Increasing the levels of cellular polyamines by ectopic overexpression of the ornithine decarboxylase gene decreased cytoplasmic levels of SG-signature constituent proteins eukaryotic initiation factor 3b and T-cell intracellular antigen-1 (TIA-1)-related protein and repressed the assembly of SGs induced by exposure to arsenite-induced oxidative stress. In contrast, depletion of cellular polyamines by inhibiting ornithine decarboxylase with α-difluoromethylornithine increased cytoplasmic eukaryotic initiation factor 3b and TIA-1 related protein abundance and enhanced arsenite-induced SG assembly. Polyamine-deficient cells also exhibited an increase in resistance to tumor necrosis factor-α/cycloheximide-induced apoptosis, which was prevented by inhibiting SG formation with silencing SG resident proteins Sort1 and TIA-1. These results indicate that the elevation of cellular polyamines represses the assembly of SGs in normal IECs and that increased SGs in polyamine-deficient cells are crucial for increased resistance to apoptosis.  相似文献   
128.

Objective

Gray matter loss in the limbic structures was found in recent onset post traumatic stress disorder (PTSD) patients. In the present study, we measured regional gray matter volume in trauma survivors to verify the hypothesis that stress may cause different regional gray matter loss in trauma survivors with and without recent onset PTSD.

Method

High resolution T1-weighted magnetic resonance imaging (MRI) were obtained from coal mine flood disaster survivors with (n = 10) and without (n = 10) recent onset PTSD and 20 no trauma exposed normal controls. The voxel-based morphometry (VBM) method was used to measure the regional gray matter volume in three groups, the correlations of PTSD symptom severities with the gray matter volume in trauma survivors were also analyzed by multiple regression.

Results

Compared with normal controls, recent onset PTSD patients had smaller gray matter volume in left dorsal anterior cingulate cortex (ACC), and non PTSD subjects had smaller gray matter volume in the right pulvinar and left pallidum. The gray matter volume of the trauma survivors correlated negatively with CAPS scores in the right frontal lobe, left anterior and middle cingulate cortex, bilateral cuneus cortex, right middle occipital lobe, while in the recent onset PTSD, the gray matter volume correlated negatively with CAPS scores in bilateral superior medial frontal lobe and right ACC.

Conclusion

The present study identified gray matter loss in different regions in recent onset PTSD and non PTSD after a single prolonged trauma exposure. The gray matter volume of left dorsal ACC associated with the development of PTSD, while the gray matter volume of right pulvinar and left pallidum associated with the response to the severe stress. The atrophy of the frontal and limbic cortices predicts the symptom severities of the PTSD.  相似文献   
129.
SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS) inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416 against MPP+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.  相似文献   
130.

Purpose

We sought to imitate angiographic cerebral circulation time (CCT) and create a similar index from baseline CT perfusion (CTP) to better predict vasospasm in patients with subarachnoid hemorrhage (SAH).

Methods

Forty-one SAH patients with available DSA and CTP were retrospectively included. The vasospasm group was comprised of patients with deterioration in conscious functioning and newly developed luminal narrowing; remaining cases were classified as the control group. The angiography CCT (XA-CCT) was defined as the difference in TTP (time to peak) between the selected arterial ROIs and the superior sagittal sinus (SSS). Four arterial ROIs were selected to generate four corresponding XA-CCTs: the right and left anterior cerebral arteries (XA-CCTRA2 and XA-CCTLA2) and right- and left-middle cerebral arteries (XA-CCTRM2 and XA-CCTLM2). The CCTs from CTP (CT-CCT) were defined as the differences in TTP from the corresponding arterial ROIs and the SSS. Correlations of the different CCTs were calculated and diagnostic accuracy in predicting vasospasm was evaluated.

Results

Intra-class correlations ranged from 0.96 to 0.98. The correlations of XA-CCTRA2, XA-CCTRM2, XA-CCTLA2, and XA-CCTLM2 with the corresponding CT-CCTs were 0.64, 0.65, 0.53, and 0.68, respectively. All CCTs were significantly prolonged in the vasospasm group (5.8–6.4 s) except for XA-CCTLA2. CT-CCTA2 of 5.62 was the optimal cut-off value for detecting vasospasm with a sensitivity of 84.2% and specificity 82.4%

Conclusion

CT-CCTs can be used to interpret cerebral flow without deconvolution algorithms, and outperform both MTT and TTP in predicting vasospasm risk. This finding may help facilitate management of patients with SAH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号