全文获取类型
收费全文 | 93篇 |
免费 | 10篇 |
专业分类
103篇 |
出版年
2021年 | 1篇 |
2019年 | 1篇 |
2017年 | 1篇 |
2016年 | 4篇 |
2015年 | 6篇 |
2014年 | 4篇 |
2011年 | 2篇 |
2010年 | 4篇 |
2009年 | 4篇 |
2008年 | 1篇 |
2007年 | 3篇 |
2006年 | 1篇 |
2005年 | 3篇 |
2004年 | 3篇 |
2003年 | 2篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1968年 | 1篇 |
1959年 | 1篇 |
1958年 | 1篇 |
1957年 | 4篇 |
1956年 | 2篇 |
1954年 | 3篇 |
1953年 | 1篇 |
1952年 | 5篇 |
1951年 | 6篇 |
1950年 | 5篇 |
1949年 | 3篇 |
1948年 | 6篇 |
1946年 | 2篇 |
排序方式: 共有103条查询结果,搜索用时 0 毫秒
11.
Microengineered systems with iPSC-derived cardiac and hepatic cells to evaluate drug adverse effects
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects. 相似文献
12.
Presence or absence of N-acetylneuraminic acid (Neu5Ac) can change a
sialylated glycoprotein's serum half-life and possibly its function. We
evaluated the linearity, sensitivity, reproducibility, and accuracy of a
HPAEC/PAD method to determine its suitability for routine simultaneous
analysis of Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). An effective
internal standard for this analysis is 3-deoxy-d-glycero-d-
galacto-2-nonulosonic acid (KDN). We investigated the effect of the Au
working electrode recession and determined that linear range and
sensitivity were dependent on electrode recession. Using an electrode that
was 350 &mgr;m recessed from the electrode block, the minimum detection
limits of Neu5Ac, KDN, and Neu5Gc were 2, 5, and 2 pmol, respectively, and
were reduced to 1, 2, and 0.5 pmol using a new electrode. The response of
standards was linear from 10 to 500 pmol (r2>0.99) regardless of
electrode recession. When Neu5Ac, KDN, and Neu5Gc (200 pmol each) were
analyzed repetitively for 48 h, area RSDs were <3%. Reproducibility was
unaffected when injections of glycoprotein neuraminidase and acid
digestions were interspersed with standard injections. Area RSDs of Neu5Ac
and Neu5Gc improved when the internal standard was used. We determined the
precision and accuracy of this method for both a recessed and a new working
electrode by analyzing Neu5Ac and Neu5Gc contents of bovine fetuin and
bovine and human transferrins. Results were consistent with published
values and independent of the working electrode. The sensitivity,
reproducibility, and accuracy of this method make it suitable for direct
routine analysis of glycoprotein Neu5Ac and Neu5Gc contents.
相似文献
13.
14.
15.
16.
17.
18.
Background
Pathway-targeted or low-density arrays are used more and more frequently in biomedical research, particularly those arrays that are based on quantitative real-time PCR. Typical QPCR arrays contain 96-1024 primer pairs or probes, and they bring with it the promise of being able to reliably measure differences in target levels without the need to establish absolute standard curves for each and every target. To achieve reliable quantification all primer pairs or array probes must perform with the same efficiency. 相似文献19.
20.