首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1998年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The Control of Mechanical Power in Insect Flight   总被引:2,自引:1,他引:1  
SYNOPSIS. The cost of locomotion is rarely constant, but rathervaries as an animal changes speed and direction. Ultimately,the locomotory muscles of an animal must compensate for thesechanging requirements by varying the amount of mechanical powerthat they produce. In this paper, we consider the mechanismsby which the mechanical power generated by the asynchronousflight muscles of the fruit fly, Drosophila melanogaster, isregulated to match the changing requirements during flight controlbehaviors. Our data come from individual flies flown in a flightarena under conditions in which stroke kinematics, total metaboliccost, and flight force are simultaneously measured. In orderto increase force production, flies must increase wing beatfrequency and wing stroke amplitude. Theory predicts that thesekinematics changes should result in a roughly cubic increasein the mechanical power requirements for flight. However, themechanical energy generated by muscle should increase only linearlywith stroke amplitude and frequency. This discrepancy impliesthat flight muscles must either recruit myofibrils or increaseactivation in order to generate sufficient mechanical powerto sustain elevated force production. By comparing respirometricallymeasured total metabolic power with kinematically estimatedmechanical power, we have calculated that the stress in theflight muscles of Drosophila must increase by 50% to accommodatea doubling of flight force. Electrophysiological evidence suggeststhat this change in stress may be accomplished by an increasedneural drive to the asynchronous muscles, which in turn mayact to recruit additional cross bridges through an increasein cytosolic calcium.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号