首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1474篇
  免费   133篇
  国内免费   1篇
  1608篇
  2022年   15篇
  2021年   15篇
  2020年   13篇
  2019年   25篇
  2018年   16篇
  2017年   14篇
  2016年   20篇
  2015年   43篇
  2014年   57篇
  2013年   57篇
  2012年   67篇
  2011年   77篇
  2010年   46篇
  2009年   50篇
  2008年   50篇
  2007年   53篇
  2006年   61篇
  2005年   55篇
  2004年   54篇
  2003年   54篇
  2002年   46篇
  2001年   40篇
  2000年   52篇
  1999年   34篇
  1998年   19篇
  1997年   17篇
  1996年   13篇
  1994年   14篇
  1993年   11篇
  1992年   23篇
  1991年   27篇
  1990年   27篇
  1989年   25篇
  1988年   31篇
  1987年   33篇
  1986年   32篇
  1985年   34篇
  1984年   36篇
  1983年   26篇
  1982年   12篇
  1981年   13篇
  1980年   13篇
  1979年   22篇
  1978年   10篇
  1977年   15篇
  1975年   11篇
  1973年   14篇
  1971年   10篇
  1970年   11篇
  1968年   11篇
排序方式: 共有1608条查询结果,搜索用时 0 毫秒
151.
The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 Å and 2.0 Å resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical “canonical” fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.  相似文献   
152.
153.
Vitellogenin and vitellin of Manduca sexta and some other insect species were purified by immobilized metal ion affinity chromatography. Ferric ion was chosen as the immobilized metal ion. Agarose-bound carboxymethylpicolylamine was used as the chelating adsorbent for the ferric ion. Vitellogenin and vitellin, both phosphorylated lipoproteins, were shown to bind specifically to the iron. The general applicability of immobilized ferric ion affinity chromatography for the purification of insect vitellogenin and vitellin is suggested.  相似文献   
154.
155.
Human hemoglobin reacts with 4-Isothiocyanatobenzene sulfonic acid at the four amino groups of the N-terminal valines. The modified protein shows a decreased oxygen affinity over a wide pH range, a reduced alkaline Bohr effect, decreased co-operativity, and a reduced effect of inositol hexasulfate on the oxygen affinity.  相似文献   
156.
157.
Feedback regulations are integral components of the cAMP signaling required for most cellular processes, including gene expression and cell differentiation. Here, we provide evidence that one of these feedback regulations involving the cyclic nucleotide phosphodiesterase PDE4D plays a critical role in cAMP signaling during the differentiation of granulosa cells of the ovarian follicle. Gonadotropins induce PDE4D mRNA and increase the cAMP hydrolyzing activity in granulosa cells, demonstrating that a feedback regulation of cAMP is operating in granulosa cells in vivo. Inactivation of the PDE4D by homologous recombination is associated with an altered pattern of cAMP accumulation induced by the gonadotropin LH/human chorionic gonadotropin (hCG), impaired female fertility, and a markedly decreased ovulation rate. In spite of a disruption of the cAMP response, LH/hCG induced P450 side chain cleavage expression and steroidogenesis in a manner similar to wild-type controls. Morphological examination of the ovary of PDE4D-/- mice indicated luteinization of antral follicles with entrapped oocytes. Consistent with the morphological finding of unruptured follicles, LH/hCG induction of genes involved in ovulation, including cyclooxygenase-2, progesterone receptor, and the downstream genes, is markedly decreased in the PDE4D-/- ovaries. These data demonstrate that PDE4D regulation plays a critical role in gonadotropin mechanism of action and suggest that the intensity and duration of the cAMP signal defines the pattern of gene expression during the differentiation of granulosa cells.  相似文献   
158.
Membrane tension underlies a range of cell physiological processes. Strong adhesion of the simple red cell is used as a simple model of a spread cell with a finite membrane tension-a state which proves useful for studies of both membrane rupture kinetics and atomic force microscopy (AFM) probing of native structure. In agreement with theories of strong adhesion, the cell takes the form of a spherical cap on a substrate densely coated with poly-L-lysine. The spreading-induced tension, sigma, in the membrane is approximately 1 mN/m, which leads to rupture over many minutes; and sigma is estimated from comparable rupture times in separate micropipette aspiration experiments. Under the sharpened tip of an AFM probe, nano-Newton impingement forces (10-30 nN) are needed to penetrate the tensed erythrocyte membrane, and these forces increase exponentially with tip velocity ( approximately nm/ms). We use the results to clarify how tapping-mode AFM imaging works at high enough tip velocities to avoid rupturing the membrane while progressively compressing it to a approximately 20-nm steric core of lipid and protein. We also demonstrate novel, reproducible AFM imaging of tension-supported membranes in physiological buffer, and we describe a stable, distended network consistent with the spectrin cytoskeleton. Additionally, slow retraction of the AFM tip from the tensed membrane yields tether-extended, multipeak sawtooth patterns of average force approximately 200 pN. In sum we show how adhesive tensioning of the red cell can be used to gain novel insights into native membrane dynamics and structure.  相似文献   
159.
Apolipoprotein (apo)-B-100 is the ligand that mediates the clearance of low density lipoprotein (LDL) from the circulation by the apoB,E (LDL) receptor pathway. Clearance is mediated by the interaction of a domain enriched in basic amino acid residues on apoB-100 with clusters of acidic residues on the apoB,E (LDL) receptor. A model has been proposed for the LDL receptor binding domain of apoB-100 based on the primary amino acid sequence (Knott, T. J., et al. 1986. Nature. 323: 734-738). Two clusters of basic residues (A: 3147-3157 and B: 3359-3367) are apposed on the surface of the LDL particle by a disulfide bridge between Cys 3167 and 3297. Support for this single domain model has been obtained from the mapping of epitopes for anti-apoB monoclonal antibodies that block the binding of apoB to the LDL receptor. Here we test this model by comparing the nucleotide (from 9623 to 10,442) and amino acid sequence (from 3139 to 3411) of apoB-100 in seven species (human, pig, rabbit, rat, Syrian hamster, mouse, and chicken). Overall, this region is highly conserved. Cluster B maintains a strong net positive charge and is homologous across species in both primary and secondary structure. However, the net positive charge of region A is not conserved across these species, but the region remains strongly hydrophilic. The secondary structure of the region between clusters A and B is preserved, but the disulfide bond is unique to the human sequence. This study suggests that the basic region B is primarily involved in the binding of apoB-100 to the apoB,E (LDL) receptor.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号