首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   72篇
  国内免费   8篇
  2022年   11篇
  2021年   17篇
  2020年   12篇
  2019年   14篇
  2018年   14篇
  2017年   11篇
  2016年   19篇
  2015年   41篇
  2014年   38篇
  2013年   43篇
  2012年   40篇
  2011年   30篇
  2010年   28篇
  2009年   25篇
  2008年   27篇
  2007年   16篇
  2006年   19篇
  2005年   11篇
  2004年   9篇
  2003年   13篇
  2002年   16篇
  2001年   18篇
  2000年   20篇
  1999年   11篇
  1998年   10篇
  1997年   6篇
  1996年   8篇
  1994年   7篇
  1992年   4篇
  1991年   8篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1983年   4篇
  1982年   8篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1974年   5篇
  1973年   4篇
  1971年   6篇
  1965年   6篇
  1959年   4篇
  1957年   4篇
  1954年   4篇
  1952年   4篇
  1925年   3篇
  1924年   3篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
661.
W. T. Connell 《CMAJ》1918,8(9):797-804
  相似文献   
662.
We tested for correlations in the degree of spatial similarity between algal and terrestrial plants communities along 5500 km of temperate Australian coastline and whether the strength of correlation weakens with increasing distance from the coast. We identified strong correlations between macroalgal and terrestrial plant communities within the first 100 km from shore, where the strength of these marine–terrestrial correlations indeed weakens with increasing distance inland. As such, our results suggest that marine‐driven community homogenization processes decompose with increasing distance from the shore toward inland. We speculate that the proximity to the marine environment produces lower levels of community turnover on land, and this effect decreases progressively farther inland. Our analysis suggests underlying ecological and evolutionary processes that give rise to continental‐scale biogeographic influence from sea to land.  相似文献   
663.
Ocean acidification affects species populations and biodiversity through direct negative effects on physiology and behaviour. The indirect effects of elevated CO2 are less well known and can sometimes be counterintuitive. Reproduction lies at the crux of species population replenishment, but we do not know how ocean acidification affects reproduction in the wild. Here, we use natural CO2 vents at a temperate rocky reef and show that even though ocean acidification acts as a direct stressor, it can indirectly increase energy budgets of fish to stimulate reproduction at no cost to physiological homeostasis. Female fish maintained energy levels by compensation: They reduced activity (foraging and aggression) to increase reproduction. In male fish, increased reproductive investment was linked to increased energy intake as mediated by intensified foraging on more abundant prey. Greater biomass of prey at the vents was linked to greater biomass of algae, as mediated by a fertilisation effect of elevated CO2 on primary production. Additionally, the abundance and aggression of paternal carers were elevated at the CO2 vents, which may further boost reproductive success. These positive indirect effects of elevated CO2 were only observed for the species of fish that was generalistic and competitively dominant, but not for 3 species of subordinate and more specialised fishes. Hence, species that capitalise on future resource enrichment can accelerate their reproduction and increase their populations, thereby altering species communities in a future ocean.

Ocean acidification affects species populations and diversity through direct negative effects on physiology and behavior, but the indirect effects are less clear. Using volcanic carbon dioxide vents as natural analogues of future ocean acidification, this study shows that elevated CO2 can stimulate fish reproduction in the wild through increased food abundance, leading to increased energy budgets at no cost to physiological homeostasis.  相似文献   
664.
665.
Amniotic fluid‐derived stem cells (AFSC) have been reported to differentiate into cardiomyocyte‐like cells and form gap junctions when directly mixed and cultured with neonatal rat ventricular myocytes (NRVM). This study investigated whether or not culture of AFSC on the opposite side of a Transwell membrane from NRVM, allowing for contact and communication without confounding factors such as cell fusion, could direct cardiac differentiation and enhance gap junction formation. Results were compared to shared media (Transwell), conditioned media and monoculture media controls. After a 2‐week culture period, AFSC did not express cardiac myosin heavy chain or troponin T in any co‐culture group. Protein expression of cardiac calsequestrin 2 was up‐regulated in direct transmembrane co‐cultures and media control cultures compared to the other experimental groups, but all groups were up‐regulated compared with undifferentiated AFSC cultures. Gap junction communication, assessed with a scrape‐loading dye transfer assay, was significantly increased in direct transmembrane co‐cultures compared to all other conditions. Gap junction communication corresponded with increased connexin 43 gene expression and decreased phosphorylation of connexin 43. Our results suggest that direct transmembrane co‐culture does not induce cardiomyocyte differentiation of AFSC, though calsequestrin expression is increased. However, direct transmembrane co‐culture does enhance connexin‐43‐mediated gap junction communication between AFSC.  相似文献   
666.
667.
Prenatal maternal psychological distress increases risk for adverse infant outcomes. However, the biological mechanisms underlying this association remain unclear. Prenatal stress can impact fetal epigenetic regulation that could underlie changes in infant stress responses. It has been suggested that maternal glucocorticoids may mediate this epigenetic effect. We examined this hypothesis by determining the impact of maternal cortisol and depressive symptoms during pregnancy on infant NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited during the second or third trimester. Participants self-reported depressive symptoms and salivary cortisol samples were collected diurnally and in response to a stressor. Buccal swabs for DNA extraction and DNA methylation analysis were collected from each infant at 2 months of age, and mothers were assessed for postnatal depressive symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F DNA methylation in male infants (β = 2.147, P = 0.044). Prenatal depressive symptoms also significantly predicted decreased BDNF IV DNA methylation in both male and female infants (β = −3.244, P = 0.013). No measure of maternal cortisol during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA methylation. Our findings highlight the susceptibility of males to changes in NR3C1 DNA methylation and present novel evidence for altered BDNF IV DNA methylation in response to maternal depression during pregnancy. The lack of association between maternal cortisol and infant DNA methylation suggests that effects of maternal depression may not be mediated directly by glucocorticoids. Future studies should consider other potential mediating mechanisms in the link between maternal mood and infant outcomes.  相似文献   
668.
The genus Macaca: a review of taxonomy and evolution   总被引:1,自引:0,他引:1  
  相似文献   
669.
Cell proliferation during the early phase of growth in regenerating amphibian limbs requires a permissive influence of nerves. Based on analyses of proliferative activity in denervated blastemas, it was proposed that nerves provide factors important for cells to complete the proliferative cycle rather than for mitogenesis itself. One such factor, the iron-transport protein transferrin (Tf), is abundant in regenerating peripheral nerves where it is axonally transported and released at growth cones. Using blastemas in organ culture, which have been widely used in previous investigations of the neural effect on growth, it was shown here that the growth-promoting activity of neural extract was completely removed by immuno-absorption with antiserum against Tf and restored by addition of Tf. Purified Tf or a low molecular weight ferric ionophore were as active as the neural extract in this assay, indicating that the trophic effect of Tf involves its capacity for iron delivery. Both Tf and ferric ionophore also maintained DNA synthesis in denervated blastemas in vivo . A dose-response assay indicated that purified axolotl Tf stimulates growth of cultured blastemal cells at concentrations as low as 100 ng/mL. The Tf mRNA in axolotl nervous tissue was shown by northern analysis to be similar in size to that of liver. These results are discussed together with those from previous in vitro studies of blastemal growth and support the hypothesis that cell division in the blastema depends on axonally released Tf during the early, nerve-dependent phase of limb regeneration.  相似文献   
670.
A method for early indentification of non-pregnant and pregnant ewes is described. It is applicable to field research situations where mating data for individual ewes cannot be collected and requires three plasma progesterone measurements from each ewe over a 12-days period.Ewes were diagnosed non-pregnant according to whether their lowest progesterone concentration (p) was below or above a “discriminatory value”. This value was chosen after examining the overall frequency distribution of values of log10p.In experiment 1, 2527 non-pregnant ewes and 6465 pregnant ewes (20 to 31 days post-mating) were diagnosed correctly (96.7% accuracy). In experiment 2, 4041 non-pregnant ews and 4548 pregnant ewes (21 to 34 days post-mating) were diagnosed correctly (95.5% accuracy).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号