首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   4篇
  71篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1989年   1篇
  1974年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
41.
42.

Aims

Development of metabolic syndrome is associated with impaired cardiac performance, mitochondrial dysfunction and pro-inflammatory cytokine increase, such as the macrophage migration inhibitory factor MIF. Depending on conditions, MIF may exert both beneficial and deleterious effects on the myocardium. Therefore, we tested whether pharmacological inhibition of MIF prevented or worsened metabolic syndrome-induced myocardial dysfunction.

Methods and Results

C57BL/6J mice were fed for ten weeks with 60% fat-enriched diet (HFD) or normal diet (ND). MIF inhibition was obtained by injecting mice twice a week with ISO-1, for three consecutive weeks. Then, triglycerides, cholesterol, fat mass, glucose intolerance, insulin resistance, ex vivo cardiac contractility, animal energetic substrate utilization assessed by indirect calorimetry and mitochondrial respiration and biogenesis were evaluated. HFD led to fat mass increase, dyslipidemia, glucose intolerance and insulin resistance. ISO-1 did not alter these parameters. However, MIF inhibition was responsible for HFD-induced cardiac dysfunction worsening. Mouse capacity to increase oxygen consumption in response to exercise was reduced in HFD compared to ND, and further diminished in ISO-1-treated HFD group. Mitochondrial respiration was reduced in HFD mice, treated or not with ISO-1. Compared to ND, mitochondrial biogenesis signaling was upregulated in the HFD as demonstrated by mitochondrial DNA amount and PGC-1α expression. However, this increase in biogenesis was blocked by ISO-1 treatment.

Conclusion

MIF inhibition achieved by ISO-1 was responsible for a reduction in HFD-induced mitochondrial biogenesis signaling that could explain majored cardiac dysfunction observed in HFD mice treated with MIF inhibitor.  相似文献   
43.
Millions of people cannot access essential medicines they need for deadly diseases like malaria, tuberculosis (TB) and HIV/AIDS. There is good information on the need for drugs for these diseases but until now, no global estimate of the impact drugs are having on this burden. This paper presents a model measuring companies’ key malaria, TB and HIV/AIDS drugs’ consequences for global health (global-health-impact.org). It aggregates drugs’ impacts in several ways–by disease, country and originator-company. The methodology can be extended across diseases as well as drugs to provide a more extensive picture of the impact companies’ drugs are having on the global burden of disease. The study suggests that key malaria, TB and HIV/AIDS drugs are, together, ameliorating about 37% of the global burden of these diseases and Sanofi, Novartis, and Pfizer’s drugs are having the largest effect on this burden. Moreover, drug impacts vary widely across countries. This index provides important information for policy makers, pharmaceutical companies, countries, and other stake-holders that can help increase access to essential medicines.  相似文献   
44.
Despite advances in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely owing to extrarenal organ dysfunction. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that facilitate organ crosstalk and induce caspase-dependent lung apoptosis and injury through a TNFR1-dependent pathway. Given that T lymphocytes mediate local IRI in the kidney and are known to drive TNFR1-mediated apoptosis, we hypothesized that T lymphocytes activated during kidney IRI would traffic to the lung and mediate pulmonary apoptosis during AKI. In an established murine model of kidney IRI, we identified trafficking of CD3(+) T lymphocytes to the lung during kidney IRI by flow cytometry and immunohistochemistry. T lymphocytes were primarily of the CD3(+)CD8(+) phenotype; however, both CD3(+)CD4(+) and CD3(+)CD8(+) T lymphocytes expressed CD69 and CD25 activation markers during ischemic AKI. The activated lung T lymphocytes did not demonstrate an increased expression of intracellular TNF-α or surface TNFR1. Kidney IRI induced pulmonary apoptosis measured by caspase-3 activation in wild-type controls, but not in T cell-deficient (T(nu/nu)) mice. Adoptive transfer of murine wild-type T lymphocytes into T(nu/nu) mice restored the injury phenotype with increased cellular apoptosis and lung microvascular barrier dysfunction, suggesting that ischemic AKI-induced pulmonary apoptosis is T cell dependent. Kidney-lung crosstalk during AKI represents a complex biological process, and although T lymphocytes appear to serve a prominent role in the interorgan effects of AKI, further experiments are necessary to elucidate the specific role of activated T cells in modulating pulmonary apoptosis.  相似文献   
45.
The induction of phagocytic activation in response to prolonged treatment with different doses of dichloroacetate (DCA) and trichloroacetate (TCA) has been investigated in mice. Groups of B6C3F1 male mice were administered 7.7, 77, 154, and 410 mg of DCA or TCA/kg/day, postorally, for 4‐ and 13‐weeks. Peritoneal lavage cells (PLCs) were isolated and assayed for the different biomarkers of phagocytyic activation, including superoxide anion (SA), tumor necrosis factor‐alpha (TNF‐α), and myeloperoxidase (MPO). In addition, the role of superoxide dismutase (SOD) in the SA production was also assessed. DCA and TCA produced significant and dose‐dependent increases in SA and TNF‐α production and in MPO activity, but the increases in response to the high doses of the compounds (>77 mg/kg/day) in the 13‐week treatment period were less significant than those produced in the 4‐week treatment period. Also, dose‐dependent increases in SOD activity were observed in both periods of treatments. In general, the results demonstrate significant induction of the biomarkers of phagocytic activation by doses of DCA and TCA that were previously shown to be noncarcinogenic, with significantly greater increases observed at the earlier period of exposure, as compared with later period. These findings may argue against the contribution of those mechanisms to the hepatotoxicity/hepatocarcinogenicity of the compounds and suggest them to be early adaptive/ protective mechanisms against their long‐term effects. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:136–144, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20322  相似文献   
46.

Background

Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown.

Methods and Results

Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif.

Conclusions and Significance

These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury.  相似文献   
47.
48.
The synthesis of a new layered cathode material, Na0.5[Ni0.23Fe0.13Mn0.63]O2, and its characterization in terms of crystalline structure and electrochemical performance in a sodium cell is reported. X‐ray diffraction studies and high resolution scanning electron microscopy images reveal a well‐defined P2‐type layered structure, while the electrochemical tests demonstrate excellent characteristics in terms of high capacity and cycle life. This performance, the low cost, and the environmental compatibility of its component poses Na0.5[Ni0.23Fe0.13Mn0.63]O2 to be among the most promising materials for the next generation of sodium‐ion batteries.  相似文献   
49.
50.
High tidal volume (HV(T)) ventilation causes pulmonary endothelial barrier dysfunction. HV(T) ventilation also increases lung nitric oxide (NO) and cGMP. NO contributes to HV(T) lung injury, but the role of cGMP is unknown. In the current study, ventilation of isolated C57BL/6 mouse lungs increased perfusate cGMP as a function of V(T). Ventilation with 20 ml/kg V(T) for 80 min increased the filtration coefficient (K(f)), an index of vascular permeability. The increased cGMP and K(f) caused by HV(T) were attenuated by nitric oxide synthase (NOS) inhibition and in lungs from endothelial NOS knockout mice. Inhibition of soluble guanylyl cyclase (sGC) in wild-type lungs (10 muM ODQ) also blocked cGMP generation and inhibited the increase in K(f), suggesting an injurious role for sGC-derived cGMP. sGC inhibition also attenuated lung Evans blue dye albumin extravasation and wet-to-dry weight ratio in an anesthetized mouse model of HV(T) injury. Additional activation of sGC (1.5 muM BAY 41-2272) in isolated lungs at 40 min increased cGMP production and K(f) in lungs ventilated with 15 ml/kg V(T). HV(T) endothelial barrier dysfunction was attenuated with a nonspecific phosphodiesterase (PDE) inhibitor (100 muM IBMX) as well as an inhibitor (10 muM BAY 60-7550) specific for the cGMP-stimulated PDE2A. Concordantly, we found a V(T)-dependent increase in lung cAMP hydrolytic activity and PDE2A protein expression with a decrease in lung cAMP concentration that was blocked by BAY 60-7550. We conclude that HV(T)-induced endothelial barrier dysfunction resulted from a simultaneous increase in NO/sGC-derived cGMP and PDE2A expression causing decreased cAMP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号