首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   13篇
  2023年   2篇
  2022年   8篇
  2021年   16篇
  2020年   9篇
  2019年   13篇
  2018年   20篇
  2017年   9篇
  2016年   23篇
  2015年   27篇
  2014年   29篇
  2013年   24篇
  2012年   25篇
  2011年   19篇
  2010年   13篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   10篇
  2005年   10篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
排序方式: 共有280条查询结果,搜索用时 62 毫秒
91.
Journal of Microbiology - Neisseria gonorrhoeae, an obligatory human pathogen causes the sexually transmitted disease gonorrhea, which remains a global health problem. N. gonorrhoeae primarily...  相似文献   
92.
Wetlands Ecology and Management - Currently, due to prolonged soil drought, dehydrated peat soils are particularly exposed to subsidence and, as a consequence, even to disappearance from the...  相似文献   
93.
Chiasmata resulting from interhomolog recombination are critical for proper chromosome segregation at meiotic metaphase I, thus preventing aneuploidy and consequent deleterious effects. Recombination in meiosis is driven by programmed induction of double strand breaks (DSBs), and the repair of these breaks occurs primarily by recombination between homologous chromosomes, not sister chromatids. Almost nothing is known about the basis for recombination partner choice in mammals. We addressed this problem using a genetic approach. Since meiotic recombination is coupled with synaptonemal complex (SC) morphogenesis, we explored the role of axial elements--precursors to the lateral element in the mature SC--in recombination partner choice, DSB repair pathways, and checkpoint control. Female mice lacking the SC axial element protein SYCP3 produce viable, but often aneuploid, oocytes. We describe genetic studies indicating that while DSB-containing Sycp3-/- oocytes can be eliminated efficiently, those that survive have completed repair before the execution of an intact DNA damage checkpoint. We find that the requirement for DMC1 and TRIP13, proteins normally essential for recombination repair of meiotic DSBs, is substantially bypassed in Sycp3 and Sycp2 mutants. This bypass requires RAD54, a functionally conserved protein that promotes intersister recombination in yeast meiosis and mammalian mitotic cells. Immunocytological and genetic studies indicated that the bypass in Sycp3-/- Dmc1-/- oocytes was linked to increased DSB repair. These experiments lead us to hypothesize that axial elements mediate the activities of recombination proteins to favor interhomolog, rather than intersister recombinational repair of genetically programmed DSBs in mice. The elimination of this activity in SYCP3- or SYCP2-deficient oocytes may underlie the aneuploidy in derivative mouse embryos and spontaneous abortions in women.  相似文献   
94.
Polysomaty was studied using flow cytometry in different organs of diploid, triploid and tetraploid sugar-beet (Beta vulgaris L.) plants, in the first (at harvest) and the second (at the height of the blooming period) year of development. Of the organs/parts of organs of the vegetative plant that developed during the first year, only the leaf lamina did not contain endopolyploid cells; in all others, one to three endocycles had occurred. The second-year seed-crop plant was also highly polysomatic; even in reproductive organs such as the flower and pericarp the endopolyploid cells were present (up to 8C and 32C, respectively). At this stage of development no endocycles occurred in the leaf lamina, flower bract, and inflorescence bract. The parts of the plant with no endopolyploid cells are recommended for ploidy estimation, and as a material suitable for micropropagation and genetic manipulations. Endoreduplication, up to 32C (64Cx), was organ-specific and correlated negatively with plant ploidy. The highest mean C-value, over 7, was in the diploid, in the basal part of the oldest leaf petiole in the first-year plant, and in the storage parenchyma of the root in the second-year seed-crop plant. The results confirm that higher endopolyploidy occurs in plants with a smaller 2C DNA amount than in those with a larger one. The significance of endopolyploidization in development of sugar-beet plant organs is discussed.  相似文献   
95.
Environmental Biology of Fishes - The carpsuckers, which include Quillback Carpiodes cyprinus, river carpsucker Carpiodes carpio, and highfin carpsucker Carpiodes velifer, are ictiobine catostomids...  相似文献   
96.
International Journal of Peptide Research and Therapeutics - Biologically active peptides derived from food proteins have been increasingly popular due to their therapeutic properties. This paper...  相似文献   
97.
Liver sinusoidal endothelial cells (LSECs), a type of endothelial cells with unique morphology and function, play an important role in the liver hemostasis, and LSECs dysfunction is involved in the development of nonalcoholic fatty liver disease (NAFLD). Here, we employed Raman imaging and chemometric data analysis in order to characterize the presence of lipid droplets (LDs) and their lipid content in primary murine LSECs, in comparison with hepatocytes, isolated from mice on high‐fat diet. On NAFLD development, LDs content in LSECs changed toward more unsaturated lipids, and this response was associated with an increased expression of stearylo‐CoA desaturase‐1. To the best of our knowledge, this is a first report characterizing LDs in LSECs, where their chemical composition is analyzed along the progression of NAFLD at the level of single LD using Raman imaging.   相似文献   
98.
99.
CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号