首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   64篇
  国内免费   3篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2019年   7篇
  2018年   7篇
  2017年   15篇
  2016年   8篇
  2015年   20篇
  2014年   23篇
  2013年   40篇
  2012年   33篇
  2011年   30篇
  2010年   14篇
  2009年   19篇
  2008年   25篇
  2007年   23篇
  2006年   24篇
  2005年   24篇
  2004年   25篇
  2003年   30篇
  2002年   19篇
  2001年   18篇
  2000年   16篇
  1999年   13篇
  1998年   13篇
  1997年   13篇
  1996年   8篇
  1995年   8篇
  1993年   6篇
  1992年   11篇
  1991年   14篇
  1990年   10篇
  1989年   21篇
  1988年   7篇
  1987年   8篇
  1986年   14篇
  1985年   17篇
  1984年   10篇
  1983年   7篇
  1982年   6篇
  1981年   7篇
  1980年   11篇
  1979年   11篇
  1978年   6篇
  1977年   5篇
  1976年   11篇
  1974年   5篇
  1971年   5篇
  1969年   5篇
  1966年   6篇
排序方式: 共有747条查询结果,搜索用时 15 毫秒
101.
102.
Claudia Grimmer  Ewald Komor 《Planta》1999,209(3):275-281
Castor bean (Ricinus communis L.) plants were grown for 5–7 weeks in a controlled environment at 350 μl l−1 or 700 μl l−1 CO2. Carbon assimilation, assimilate deposition, dark respiration and assimilate mobilization were measured in leaves 2, 3 and 4 (counted from the base of the plant), and a balance sheet of carbon input and export was elaborated for both CO2 concentrations. Carbon dioxide assimilation was nearly constant over the illumination period, with only a slight depression occurring at the end of the day in mature source leaves, not in young source leaves. Assimilation was ca. 40% higher at 700 μl l−1 than at 350 μl l−1 CO2. The source leaves increased steadily in weight per unit area during the first 3 weeks, more at 700 μl l−1 than at 350 μl l−1 CO2. On top of an irreversible weight increase, there was a large gain in dry weight during the day, which was reversed during the night. This reversible weight gain was constant over the life time of the leaf and ca. 80% higher at 700 μl l−1 than at 350 μl l−1. Most of it was due to carbohydrates. The carbon content (as a percentage) was not altered by the CO2 treatment. Respiration was 25% higher in high-CO2 plants when based on leaf area, but the same when based on dry weight. The rate of carbon export via the phloem was the same during the daytime in plants grown at 350 μl l−1 and 700 μl l−1 CO2. During the night the low-CO2 plants had only 50% of the daytime export rate, in contrast to the high-CO2 plants which maintained the high export rate. It was concluded that the phloem loading system is saturated during the daytime in both CO2 regimes, whereas during the night the assimilate supply is reduced in plants in the normal CO2 concentration. Two-thirds of the carbon exported from the leaves was permanently incorporated as plant dry matter in the residual plant parts. This “assimilation efficiency” was the same for both CO2 regimes. It is speculated that under 350 μl l−1 CO2 the growing Ricinus plant operates at sink limitation during the day and at source limitation during the night. Received: 2 February 1999 / Accepted: 19 April 1999  相似文献   
103.
Germination, growth, and physiological responses of hybridizing Carpobrotus from coastal California to soil salinity were studied. Hybrids are presumably the result of hybridization and introgression between the exotic Carpobrotus edulis, a succulent perennial invading coastal habitats, and the native or long-naturalized C. chilensis. Germination responses were investigated at 0, 10, 20, and 50% seawater. Seedling growth and physiology were compared by irrigating seedlings with solutions of the same seawater concentrations and in low and high nutrients. Germination was inhibited in the presence of salt, but recovered after transferring the seeds to fresh water. Seeds exposed to salt had higher final germination rates than control. Growth of Carpobrotus was slightly enhanced by low seawater concentrations but reduced at high salinity at both nutrient regimes. Leaf cell sap osmolarity increased with increasing soil salinity, and taxa did not differ significantly in this physiological adjustment. Leaf carbon isotope ratios (∂13C) ranged from −28 to −22‰ and became less negative at higher salinities, indicating an improved water use efficiency in the seedlings at high salt concentrations. In addition, ∂13C values were generally less negative at high than at low nutrients. Differences among taxa were generally small. The results show that salinity affects both establishment and growth of hybridizing Carpobrotus. The overall weak species differences in salt tolerance indicate that the exotic C. edulis can occupy the same sites as C. chilensis in terms of salinity. The similarity of hybrids in their response to salinity suggests that they may contribute to the invasion by Carpobrotus.  相似文献   
104.
105.
Many organs consist of tubes of epithelial cells enclosing a central lumen. How the space of this lumen is generated is a key question in morphogenesis. Two predominant mechanisms of de novo lumen formation have been observed: hollowing and cavitation. In hollowing, the lumen is formed by exocytosis and membrane separation, whereas, in cavitation, the lumen is generated by apoptosis of cells in the middle of the structure [1, 2]. Using MDCK cells in three-dimensional cultures, we found an inverse correlation between polarization efficiency and apoptosis. When cells were grown in collagen, where cells polarized slowly, apoptosis was needed for lumen formation. However, in the presence of Matrigel, which allowed rapid polarization, lumens formed without apoptosis. If polarization in Matrigel was perturbed by blocking formation of the apical surface by RNAi of Cdc42, lumens formed by apoptosis. In a complementary approach, we plated cells at high density so that aggregates formed with little polarity. These aggregates required apoptosis to form lumens, whereas cells plated at low density formed cysts with rapidly polarizing cells and did not need apoptosis to form lumens. The mechanism of lumen formation in the 3D-MDCK model can shift between hollowing and cavitation, depending on cell polarization.  相似文献   
106.
In a long-term study (1990–1997) on ochratoxin A (OTA) in human blood serum, 102 serum samples from 36 persons of the Munich Institute for Hygiene and Technology of Food of Animal Origin were analysed by enzyme immunoassay (EIA), and by high performance liquid chromatography (HPLC) for control. Detection limits were at 50 pg/ml (EIA) and 50–70 pg/ml (HPLC), recoveries were 80–120% (EIA) and 30–60% (LC). OTA was detected in 98% (EIA, 368 ± 217 pg/ml) and 93% (HPLC, 271 ± 170 pg/ml) of samples (maximum 1,290 pg/ml). Using published conversion factors for serum/intake estimates (1.34 or 1.97), the mean daily OTA intake of these 36 persons was 493–725 pg/kg bw. Long-term individual mean OTA levels of nine persons ranged from 162 ± 80 pg/ml to 549 ± 172 pg/ml. Our data were compared with published OTA serum levels (1985–2008) for apparently healthy persons from a total of 30 countries. On a worldwide basis, the mean of means for OTA in human serum was estimated to be 700 pg/ml, corresponding to a mean daily OTA intake of 940–1380 pg/kg bw. This level, which was relatively stable over the last decades, is well below published tolerable daily intake values (14,000–18,000 pg/kg bw).  相似文献   
107.
The objective of this study was to determine the effect of pre-treatment of prepubertal gilts with FSH on the estrus and ovulatory responses to eCG injection at two ages. A total of 149 prepubertal Hypor gilts were selected at 150 days (n=76) or 180 days (n=73) of age and assigned to injection of 400 IU eCG plus 200 IU hCG (PG600), 600IU eCG alone (Folligon), pre-treatment with 72 mg FSH (Folltropin) administered as 6 x 12 mg injections at 12 h intervals with 600 IU Folligon 12h after last FSH injection, or non-injected controls. To facilitate detection of estrus, gilts were exposed to a mature boar for 15 min daily for 7 days. To determine ovulatory responses, blood samples were obtained on the day of injection and 10 days later and assayed for progesterone content. Following treatment at 150 days, one control gilt (5.3%) was deemed estrus but ovulation did not occur. Compared to treatment with Folligon alone, PG600 injection tended (P=0.1) to increase the estrus response (52.6% compared with. 26.3%) and increased (P<0.01) the ovulatory response (89.5% compared with. 47.4%). The estrous response in gilts pretreated with Folltropin was intermediate (42.1%) but the ovulatory response (47.4%) was the same as for Folligon alone. Following treatment at 180 days, two control gilts (10.5%) were deemed estrus and ovulation did occur in these gilts. There was no difference between hormone-treated groups for estrus or ovulatory responses, although the ovulatory response of PG600-treated gilts tended (P=0.1) to be greater than for the Folligon-treated group (89.5% compared with 66.7%), with Folltropin-pretreated gilts being intermediate (76.5%). These data demonstrate that the estrus and ovulatory responses of gilts were greater for PG600 than for Folligon and that while responses to PG600 were not affected by gilt age, for the combined Folligon groups, estrous response (P<0.02) and ovulatory response (P<0.05) improved with increased gilt age.  相似文献   
108.
Reliable distribution maps are crucial for the management of invasive plant species. An alternative to traditional field surveys is the use of remote sensing data, which allows coverage of large areas. However, most remote sensing studies on invasive plant species focus on mapping large stands of easily detectable study species. In this study, we used hyperspectral remote sensing data in combination with field data to derive a distribution map of an invasive bryophyte species, Campylopus introflexus, on the island of Sylt in Northern Germany. We collected plant cover data on 57 plots to calibrate the model and presence/absence data of C. introflexus on another 150 plots for independent validation. We simultaneously acquired airborne hyperspectral (APEX) images during summer 2014, providing 285 spectral bands. We used a Maxent modelling approach to map the distribution of C. introflexus. Although C. introflexus is a small and inconspicuous species, we were able to map its distribution with an overall accuracy of 75 %. Reducing the sampling effort from 57 to 7 plots, our models performed fairly well until sampling effort dropped below 12 plots. The model predicts that C. introflexus is present in about one quarter of the pixels in our study area. The highest percentage of C. introflexus is predicted in the dune grassland. Our findings suggest that hyperspectral remote sensing data have the potential to provide reliable information about the degree of bryophyte invasion, and thus provide an alternative to traditional field mapping approaches over large areas.  相似文献   
109.
Prosthetic lipoyl groups are required for the function of several essential multienzyme complexes, such as pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), and the glycine cleavage system (glycine decarboxylase [GDC]). How these proteins are lipoylated has been extensively studied in prokaryotes and yeast (Saccharomyces cerevisiae), but little is known for plants. We earlier reported that mitochondrial fatty acid synthesis by ketoacyl-acyl carrier protein synthase is not vital for protein lipoylation in Arabidopsis (Arabidopsis thaliana) and does not play a significant role in roots. Here, we identify Arabidopsis lipoate-protein ligase (AtLPLA) as an essential mitochondrial enzyme that uses octanoyl-nucleoside monophosphate and possibly other donor substrates for the octanoylation of mitochondrial PDH-E2 and GDC H-protein; it shows no reactivity with bacterial and possibly plant KGDH-E2. The octanoate-activating enzyme is unknown, but we assume that it uses octanoyl moieties provided by mitochondrial β-oxidation. AtLPLA is essential for the octanoylation of PDH-E2, whereas GDC H-protein can optionally also be octanoylated by octanoyltransferase (LIP2) using octanoyl chains provided by mitochondrial ketoacyl-acyl carrier protein synthase to meet the high lipoate requirement of leaf mesophyll mitochondria. Similar to protein lipoylation in yeast, LIP2 likely also transfers octanoyl groups attached to the H-protein to KGDH-E2 but not to PDH-E2, which is exclusively octanoylated by LPLA. We suggest that LPLA and LIP2 together provide a basal protein lipoylation network to plants that is similar to that in other eukaryotes.Lipoic acid (LA; 6,8-dithiooctanoic acid) prosthetic groups are essential for the catalytic activity of four important multienzyme complexes in plants and other organisms: pyruvate dehydrogenase (PDH), α-ketoglutarate dehydrogenase (KGDH), branched-chain α-ketoacid dehydrogenase (BCDH), and the Gly cleavage system (glycine decarboxylase [GDC]; Perham, 2000; Douce et al., 2001; Mooney et al., 2002). In all these multienzyme complexes, LA is covalently attached to the ε-amino group of a particular lysyl residue of the respective protein subunit. Lipoylated E2 subunits of PDH, KGDH, and BCDH are dihydrolipoyl acyltransferases that interact with E1 and E3 subunits to pass acyl intermediates to CoA (Mooney et al., 2002). By contrast, the lipoylated H-protein of GDC acts as a cosubstrate of three other GDC proteins and has no enzymatic activity itself (Douce et al., 2001). In the course of their respective reaction cycles, LA becomes reduced to dihydrolipoic acid. Most of these enzymes are confined to the mitochondrion. As the only exception, PDH is also present in plastids, where it provides acetyl-CoA for fatty acid biosynthesis (Ohlrogge et al., 1979; Lernmark and Gardeström, 1994; Lin et al., 2003).Mitochondria and plastids each have their own route of de novo LA synthesis, both of which start with the synthesis of protein-bound octanoyl chains (Shimakata and Stumpf, 1982; Ohlrogge and Browse, 1995; Wada et al., 1997; Gueguen et al., 2000; Yasuno et al., 2004). These octanoyl moieties are passed on by organelle-specific octanoyltransferases (Wada et al., 2001a, 2001b) to the respective target apoproteins where lipoyl synthase (LIP1) inserts two sulfur atoms to finally produce functional lipoyl groups (Yasuno and Wada, 1998, 2002; Zhao et al., 2003). A similar pathway has been identified in mammalian mitochondria (Morikawa et al., 2001; Witkowski et al., 2007). In quantitative terms, leaf mesophyll mitochondria have an extraordinarily high requirement for lipoate, because they contain very large amounts of GDC to catalyze the photorespiratory Gly-to-Ser conversion (Bauwe et al., 2010). For this reason, leaf mesophyll mitochondria are the major site of LA synthesis in plants (Wada et al., 1997).It was thought that the octanoyl chains provided by mitochondrial β-ketoacyl-acyl carrier protein synthase (mtKAS) represent the solitary source for protein lipoylation in plant mitochondria (Yasuno et al., 2004). As we reported earlier, however, leaves of mtKAS-deficient knockout mutants show considerable lipoylation of mitochondrial PDH-E2 and KGDH-E2 subunits and some residual lipoylation of GDC H-protein; roots are not at all impaired. Accordingly, the phenotype of such mutants can be fully cured in the low-photorespiratory condition of elevated CO2 (Ewald et al., 2007). These observations indicated that plant mitochondria, in addition to the mtKAS-LIP2-LIP1 route of protein lipoylation, can resort to an alternative pathway. This would not be uncommon. In Escherichia coli, for example, a salvage pathway utilizes free octanoate or LA in an ATP-dependent two-step reaction catalyzed by the bifunctional enzyme lipoate-protein ligase A (LPLA; Morris et al., 1995). Archaea (Christensen and Cronan, 2009; Posner et al., 2009) and vertebrates (Tsunoda and Yasunobu, 1967) require two separate enzymes to first activate octanoate or LA to lipoyl-nucleoside monophosphate (NMP) and then, in a second step, to convey the activated lipoyl group to the respective target proteins. The lipoate-activating enzyme (LAE) of mammals was identified as a refunctioned medium-chain acyl-CoA synthetase that utilizes GTP to produce lipoyl-GMP (Fujiwara et al., 2001). LIP3 from yeast (Saccharomyces cerevisiae) can use octanoyl-CoA to octanoylate apoE2 proteins (Hermes and Cronan, 2013), whereas octanoyl groups from fatty acid biosynthesis are first attached to H-protein and then passed on to apoE2 proteins (Schonauer et al., 2009).The physiological significance of lipoyl-protein ligases in plants is not exactly known. Such enzymes do not operate in plastids (Ewald et al., 2014) but could be present in mitochondria. A single-gene-encoded LPLA with predicted mitochondrial localization has been identified in rice (Oryza sativa; Kang et al., 2007). Complementation studies with the lipoylation-deficient E. coli mutant TM137 (Morris et al., 1995) suggested that OsLPLA belongs to the bifunctional type of LPLAs. We report the identification of the homologous enzyme in Arabidopsis (Arabidopsis thaliana), provide evidence for its mitochondrial location, and show that Arabidopsis LPLA requires a separate enzyme for octanoate/lipoate activation. We also examine the interplay between LPLA, LIP2, and the mtKAS route of protein lipoylation and suggest a model for protein lipoylation in plant mitochondria.  相似文献   
110.
Stress is one of the most important promoters of aggression. Human and animal studies have found associations between basal and acute levels of the stress hormone cortisol and (abnormal) aggression. Irrespective of the direction of these changes - i.e., increased or decreased aggressive behavior - the results of these studies suggest dramatic alterations in the processing of threat-related social information. Therefore, the effects of cortisol and provocation on social information processing were addressed by the present study. After a placebo-controlled pharmacological manipulation of acute cortisol levels, we exposed healthy individuals to high or low levels of provocation in a competitive aggression paradigm. Influences of cortisol and provocation on emotional face processing were then investigated with reaction times and event-related potentials (ERPs) in an emotional Stroop task. In line with previous results, enhanced early and later positive, posterior ERP components indicated a provocation-induced enhanced relevance for all kinds of social information. Cortisol, however, reduced an early frontocentral bias for angry faces and - despite the provocation-enhancing relevance - led to faster reactions for all facial expressions in highly provoked participants. The results thus support the moderating role of social information processing in the ‘vicious circle of stress and aggression’.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号