全文获取类型
收费全文 | 693篇 |
免费 | 63篇 |
国内免费 | 4篇 |
专业分类
760篇 |
出版年
2023年 | 5篇 |
2022年 | 5篇 |
2021年 | 9篇 |
2020年 | 7篇 |
2019年 | 7篇 |
2018年 | 14篇 |
2017年 | 15篇 |
2016年 | 10篇 |
2015年 | 29篇 |
2014年 | 25篇 |
2013年 | 50篇 |
2012年 | 45篇 |
2011年 | 36篇 |
2010年 | 17篇 |
2009年 | 17篇 |
2008年 | 31篇 |
2007年 | 22篇 |
2006年 | 22篇 |
2005年 | 23篇 |
2004年 | 26篇 |
2003年 | 38篇 |
2002年 | 20篇 |
2001年 | 22篇 |
2000年 | 16篇 |
1999年 | 13篇 |
1998年 | 16篇 |
1997年 | 14篇 |
1996年 | 8篇 |
1995年 | 6篇 |
1993年 | 7篇 |
1992年 | 11篇 |
1991年 | 13篇 |
1990年 | 9篇 |
1989年 | 19篇 |
1988年 | 8篇 |
1987年 | 8篇 |
1986年 | 7篇 |
1985年 | 4篇 |
1984年 | 5篇 |
1983年 | 8篇 |
1982年 | 7篇 |
1981年 | 5篇 |
1980年 | 7篇 |
1979年 | 5篇 |
1978年 | 6篇 |
1977年 | 5篇 |
1976年 | 8篇 |
1967年 | 4篇 |
1966年 | 4篇 |
1962年 | 4篇 |
排序方式: 共有760条查询结果,搜索用时 15 毫秒
21.
Fusion proteins were constructed between either a wild-type or mutant Thr370Lys alpha2B-adrenoceptor (alpha2B AR) and a mouse Galpha15 protein to analyze ligand-receptor interactions at a receptor/Galpha15 protein density ratio of 1. Activation of the wild-type alpha2B AR-Galpha15 fusion protein in CHO-K1 cells by (-)-adrenaline induced a time- and concentration-dependent (pEC50 = 7.37+/-0.13) increase in the intracellular Ca2+ concentration, which could be antagonized by RX 811059 (pK(B) = 7.55+/-0.15). Whereas d-medetomidine and oxymetazoline were as efficacious agonists as (-)-adrenaline, the following ligands displayed partial agonist properties: BRL 44408 < atipamezole < clonidine < UK 14304 < BHT 920. A comparison with the mutant Thr370Lys alpha2B AR-Galpha15 fusion protein displayed similar Ca2+ kinetics and a ligand-mediated receptor activation profile characterized by higher potencies and greater maximal Ca2+ responses for the ligands being investigated, including the putative antagonists dexefaroxan and idazoxan. RX 811059 and RX 821002 remained silent. Similar conclusions could be made on enhancement of the ligands' intrinsic activities by coexpression of the mutant Thr370Lys alpha2B AR with either a Galpha15 or Galphao Cys351Ile protein. The Thr370Lys alpha2B AR-Galpha protein interactions may modify the tertiary structure of the mutant receptor in such a way that some putative alpha2 AR antagonists are capable of stabilizing an active receptor conformation, thereby generating positive efficacy. 相似文献
22.
Astrid Grottke Florian Ewald Tobias Lange Dominik N?rz Christiane Herzberger Johanna Bach Nicole Grabinski Lareen Gr?ser Frank H?ppner Bj?rn Nashan Udo Schumacher Manfred Jücker 《PloS one》2016,11(1)
Background
Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.Methods
The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.Results
Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.Conclusions
We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors. 相似文献23.
Interaction of Eukaryotic Initiation Factor eIF4B with the Internal Ribosome Entry Site of Foot-and-Mouth Disease Virus Is Independent of the Polypyrimidine Tract-Binding Protein 总被引:2,自引:0,他引:2 下载免费PDF全文
Ren C. Rust Kerstin Ochs Karsten Meyer Ewald Beck Michael Niepmann 《Journal of virology》1999,73(7):6111-6113
Eukaryotic translation initiation factor 4B (eIF4B) binds directly to the internal ribosome entry site (IRES) of foot-and-mouth disease virus (FMDV). Mutations in all three subdomains of the IRES stem-loop 4 reduce binding of eIF4B and translation efficiency in parallel, indicating that eIF4B is functionally involved in FMDV translation initiation. In reticulocyte lysate devoid of polypyrimidine tract-binding protein (PTB), eIF4B still bound well to the wild-type IRES, even after removal of the major PTB-binding site. In conclusion, the interaction of eIF4B with the FMDV IRES is essential for IRES function but independent of PTB. 相似文献
24.
Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model 总被引:19,自引:0,他引:19
Lambrecht BN Pauwels RA Fazekas De St Groth B 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(6):2937-2946
Dendritic cells (DCs) are thought to be responsible for sensitization to inhaled Ag and induction of adaptive immunity in the lung. The characteristics of T cell activation in the lung were studied after transfer of Ag-pulsed bone marrow-derived DCs into the airways of naive mice. Cell division of Ag-specific T cells in vivo was followed in a carboxyfluorescein diacetate succinimidyl ester-labeled cohort of naive moth cytochrome c-reactive TCR transgenic T cells. Our adoptive transfer system was such that transferred DCs were the only cells expressing the MHC molecule required for presentation of cytochrome c to transgenic T cells. Ag-specific T cell activation and proliferation occurred rapidly in the draining lymph nodes of the lung, but not in nondraining lymph nodes or spleen. No bystander activation of non-Ag-specific T cells was induced. Division of Ag-specific T cells was accompanied by transient expression of CD69, while up-regulation of CD44 increased with each cell division. Divided cells had recirculated to nondraining lymph nodes and spleen by day 4 of the response. In vitro restimulation with specific Ag revealed that T cells were primed to proliferate more strongly and to produce higher amounts of cytokines per cell. These data are consistent with the notion that DCs in the lung are extremely efficient in selecting Ag-reactive T cells from a diverse repertoire. The response is initially localized in the mediastinal lymph nodes, but subsequently spreads systemically. This system should allow us to study the early events leading to sensitization to inhaled Ag. 相似文献
25.
Molecular characterization of major histocompatibility complex (B) haplotypes in broiler chickens 总被引:2,自引:0,他引:2
In Leghorn (laying) chickens, susceptibility to a number of infectious diseases is strongly associated with the major histocompatibility ( B ) complex. Nucleotide sequence data have been published for six class I ( B-F ) alleles and for class II ( B-Lβ ) alleles or isotypes from 17 Leghorn haplotypes. It is not known if classical B-L or B-F alleles in broilers are identical, at the sequence level, to any Leghorn alleles. This report describes molecular and immunogenetic characterization of two haplotypes from commercial broiler breeder chickens that were originally identified by serology as a single haplotype, but were differentiated serologically in the present work. The two haplotypes, designated B A4 and B A4variant , shared identical B-G restriction fragment length polymorphism patterns, but differed in one B-Lβ fragment that cosegregated with the serological B haplotype. Furthermore, the nucleotide sequences of the highly variable exons of an expressed B-LβII family gene and B-F gene from the two haplotypes were markedly different from each other. Both the B-LβII family and B-F gene sequences from the B A4 haplotype were identical to the sequences obtained from the reference B 21 haplotype in Leghorns; however, in the B A4 haplotype the B-Lβ 21 and B-F 21 alleles were in linkage with B-G alleles that were not G 21 . The nucleotide sequences from B A4variant were unique among the reported chicken B-LβII family and B-F alleles. 相似文献
26.
Potent and selective anti-HTLV-III/LAV activity of 2',3'-dideoxycytidinene, the 2',3'-unsaturated derivative of 2',3'-dideoxycytidine 总被引:9,自引:0,他引:9
J Balzarini R Pauwels P Herdewijn E De Clercq D A Cooney G J Kang M Dalal D G Johns S Broder 《Biochemical and biophysical research communications》1986,140(2):735-742
2',3'-Dideoxycytidinene (ddeCyd), the 2',3'-unsaturated derivative of 2',3'-dideoxycytidine (ddCyd) is, like ddCyd itself, a potent and selective inhibitor of HTLV-III/LAV in vitro. This conclusion is based on the relatively high ratio of effective antiviral dose (0.3 microM) versus cell growth inhibitory concentration (20-35 microM) and the lack of any appreciable inhibitory activity against a series of non-oncogenic RNA and DNA viruses. Both compounds were considerably more inhibitory to human lymphoid cell lines than human nonlymphoid or murine cell lines. They were highly dependent on prior activation by deoxycytidine kinase to exert their anti-HTLV-III/LAV and cytostatic effects. In contrast with ddCyd, ddeCyd lost part of its anti-retrovirus effect upon prolonged incubation (10 days) with the virus-infected cells in culture. 相似文献
27.
Oliviero?De?Simone Ewald?Müller Wolfgang?J.?Junk Kerstin?Richau Wolfgang?SchmidtEmail author 《Trees - Structure and Function》2003,17(6):535-541
Trees inhabiting central Amazon floodplain forests are subjected to an annual flood-pulse lasting up to 10 months, leading to both oxygen shortage and accumulation of high levels of reduced iron. To understand the mechanisms underlying the adaptation to these conditions, cuttings from three tree species typical of várzea inundation forests (Salix martiana, Tabernaemontana juruana, and Laetia corymbulosa), were cultivated either aerobically or anaerobically under different iron regimes in greenhouse experiments. Although all species are considered to be non-deciduous, Laetia corymbulosa lost and formed new leaves continuously during the experimental period. Although relative growth rates (RGRs) of all species declined in response to hypoxic conditions, no marked changes in RGRs were apparent among different iron concentrations in the growth medium, ranging from 50 to 500 µM, supplied in ferrous form as FeSO4. Whereas roots exhibited color changes due to the formation of iron precipitates, no visual symptoms of iron toxicity were observed in the leaves. Iron concentration increased in all organs of all species with increasing iron concentrations in the medium, except for leaves of S. martiana and T. juruana, suggesting an effective restriction of iron influx into the leaf symplast. Although the leaf iron concentration was at the upper limit of the critical range at high external iron levels, it is suggested that internal active transport rather than intracellular detoxification mechanisms contribute to the tolerance to supra-optimal iron levels. Anatomical traits such as suberization of peripheral cell walls and the formation of aerenchyma appear to be of minor importance for Fe tolerance. 相似文献
28.
M Baba R Pauwels P Herdewijn E De Clercq J Desmyter M Vandeputte 《Biochemical and biophysical research communications》1987,142(1):128-134
2',3'-Dideoxythymidine (ddThd) and its 2',3'-unsaturated derivative 2',3'-dideoxythymidinene (ddeThd) are potent and selective inhibitors of human immunodeficiency virus (HIV) in vitro. When evaluated for their inhibitory effects on the cytopathogenicity of HIV in MT-4 cells, ddThd and ddeThd completely protected the cells against destruction by the virus at a concentration of 1 microM and 0.04 microM, respectively. In this aspect, ddeThd was about 5 times more potent than 2',3'-dideoxycytidine (ddCyd), one of the most potent and selective anti-HIV compounds now pursued for its therapeutic potential in the treatment of AIDS. ddThd and ddeThd also suppressed HIV antigen expression at 1 microM and 0.04 microM, respectively. Their selectivity indexes, as based on the ratio of the 50% cytotoxic dose to the 50% antiviral effective dose, were 120 (ddeThd) and greater than 625 (ddThd). 相似文献
29.
30.
Salma Akter Jingjing Huang Nandita Bodra Barbara De Smet Khadija Wahni Debbie Rombaut Jarne Pauwels Kris Gevaert Kate Carroll Frank Van Breusegem Joris Messens 《Molecular & cellular proteomics : MCP》2015,14(5):1183-1200
Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana.Among the different amino acids, the sulfur containing amino acids like cysteine are particularly susceptible to oxidation by reactive oxygen species (ROS)1 (1, 2). Recent studies suggest that the sulfenome, the initial oxidation products of cysteine residues, functions as an intermediate state of redox signaling (3
–5). Thus, identifying the sulfenome under oxidative stress is a way to detect potential redox sensors (6, 7).This central role of the sulfenome in redox signaling provoked chemical biologists to develop strategies for sensitive detection and identification of sulfenylated proteins. The in situ trapping of the sulfenome is challenging because of two major factors: (1) the highly reactive, transient nature of sulfenic acids, which might be over-oxidized in excess of ROS, unless immediately protected by disulfide formation (7); (2) the intracellular compartmentalization of the redox state that might be disrupted during extraction procedures, resulting in artificial non-native protein oxidations (8, 9). Having a sulfur oxidation state of zero, sulfenic acids can react as both electrophile and nucleophile, however, direct detection methods are based on the electrophilic character of sulfenic acid (10). In 1974, Allison and coworkers reported a condensation reaction between the electrophilic sulfenic acid and the nucleophile dimedone (5,5-dimethyl-1,3-cyclohexanedione), producing a corresponding thioether derivative (11). This chemistry is highly selective and, since then, has been exploited to detect dimedone modified sulfenic acids using mass spectrometry (12). However, dimedone has limited applications for cellular sulfenome identification because of the lack of a functional group to enrich the dimedone tagged sulfenic acids. Later, dimedone-biotin/fluorophores conjugates have been developed, which allowed sensitive detection and enrichment of sulfenic acid modified proteins (13
–15). This approach, however, was not always compatible with in vivo cellular sulfenome analysis, because the biotin/fluorophores-conjugated dimedone is membrane impermeable (9) and endogenous biotinylated proteins might appear as false positives.More recently, the Carroll lab has developed DYn-2, a sulfenic acid specific chemical probe. This chemical probe consists of two functional units: a dimedone scaffold for sulfenic acid recognition and an alkyne chemical handle for enrichment of labeled proteins (9). Once the sulfenic acids are tagged with the DYn-2 probe, they can be biotinylated through click chemistry (16). The click reaction used here is a copper (I)-catalyzed azide-alkyne cycloaddition reaction (17), also known as azide-alkyne Huisgen cycloaddition (16). With this chemistry, a complex is formed between the alkyne functionalized DYn-2 and the azide functionalized biotin. This biotin functional group facilitates downstream detection, enrichment, and mass spectrometry based identification (Fig. 1). In an evaluation experiment, DYn-2 was found to efficiently detect H2O2-dependent sulfenic acid modifications in recombinant glutathione peroxidase 3 (Gpx3) of budding yeast (18). Moreover, it was reported that DYn-2 is membrane permeable, non-toxic, and a non-influencer of the intracellular redox balance (17, 18). Therefore, DYn-2 has been suggested as a global sulfenome reader in living cells (17, 18), and has been applied to investigate epidermal growth factor (EGF) mediated protein sulfenylation in a human epidermoid carcinoma A431 cell line and to identify intracellular protein targets of H2O2 during cell signaling (17).Open in a separate windowFig. 1.Schematic views of the molecular mechanism of the DYn-2 probe and the strategy to identify DYn-2 trapped sulfenylated proteins.
A, DYn-2 specifically detects sulfenic acid modifications, but no other thiol modifications. B, Biotinylation of the DYn-2 tagged proteins by click reaction. C, Once DYn-2 tagged proteins are biotinylated, a streptavidin-HRP (Strep-HRP) blot visualizes sulfenylation, or alternatively, after enrichment on avidin beads, proteins are identified by mass spectrometry analysis.Here, we selected the DYn-2 probe to identify the sulfenome in plant cells under oxidative stress. Through a combination of biochemical, immunoblot and mass spectrometry techniques, and TAIR10 database and SUBA3-software predictions, we can claim that DYn-2 is able to detect sulfenic acids on proteins located in different subcellular compartments of plant cells. We identified 226 sulfenylated proteins in response to an H2O2 treatment of Arabidopsis cell suspensions, of which 123 proteins are new candidates for cysteine oxidative post-translational modification (PTM) events. 相似文献