首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   881篇
  免费   73篇
  国内免费   3篇
  2022年   6篇
  2021年   8篇
  2019年   10篇
  2018年   13篇
  2017年   22篇
  2016年   10篇
  2015年   26篇
  2014年   42篇
  2013年   63篇
  2012年   38篇
  2011年   42篇
  2010年   24篇
  2009年   30篇
  2008年   36篇
  2007年   33篇
  2006年   38篇
  2005年   33篇
  2004年   38篇
  2003年   38篇
  2002年   31篇
  2001年   29篇
  2000年   26篇
  1999年   28篇
  1998年   19篇
  1997年   14篇
  1996年   10篇
  1995年   7篇
  1994年   7篇
  1993年   11篇
  1992年   10篇
  1991年   14篇
  1990年   11篇
  1989年   16篇
  1988年   9篇
  1987年   5篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   6篇
  1981年   9篇
  1980年   8篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1976年   9篇
  1974年   5篇
  1970年   5篇
  1967年   5篇
  1966年   5篇
  1936年   5篇
排序方式: 共有957条查询结果,搜索用时 15 毫秒
51.

Background

Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today’s gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo.

Methods

The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo.

Results

Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3.

Conclusions

We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.  相似文献   
52.
The amphetamine-derived designer drug 4-iodo-2,5-dimethoxy-amphetamine (DOI) is an upcoming substance on the illicit drug market. In the current study, the identification of its metabolites in rat urine and their toxicological detection in the authors' systematic toxicological analysis (STA) procedure were examined. DOI is extensively metabolized by O-demethylation and beside small amounts of parent compound it was found to be excreted mainly in form of metabolites. The STA procedure using full-scan GC-MS allowed proving an intake of a common drug users' dose of DOI by detection of the two O-demethyl metabolite isomers in rat urine. Assuming similar metabolism, the described STA procedure should be suitable for proof of an intake of DOI in human urine.  相似文献   
53.
The basic question addressed in this study is how energy metabolism is adjusted to cope with iron deficiency in Chlamydomonas reinhardtii. To investigate the impact of iron deficiency on bioenergetic pathways, comparative proteomics was combined with spectroscopic as well as voltametric oxygen measurements to assess protein dynamics linked to functional properties of respiratory and photosynthetic machineries. Although photosynthetic electron transfer is largely compromised under iron deficiency, our quantitative and spectroscopic data revealed that the functional antenna size of photosystem II (PSII) significantly increased. Concomitantly, stress-related chloroplast polypeptides, like 2-cys peroxiredoxin and a stress-inducible light-harvesting protein, LhcSR3, as well as a novel light-harvesting protein and several proteins of unknown function were induced under iron-deprivation. Respiratory oxygen consumption did not decrease and accordingly, polypeptides of respiratory complexes, harboring numerous iron-sulfur clusters, were only slightly diminished or even increased under low iron. Consequently, iron-deprivation induces a transition from photoheterotrophic to primarily heterotrophic metabolism, indicating that a hierarchy for iron allocations within organelles of a single cell exists that is closely linked with the metabolic state of the cell.  相似文献   
54.
Kaina B  Christmann M  Naumann S  Roos WP 《DNA Repair》2007,6(8):1079-1099
O(6)-methylguanine-DNA methyltransferase (MGMT) plays a crucial role in the defense against alkylating agents that generate, among other lesions, O(6)-alkylguanine in DNA (collectively termed O(6)-alkylating agents [O(6)AA]). The defense is highly important, since O(6)AA are common environmental carcinogens, are formed endogenously during normal cellular metabolism and possibly inflammation, and are being used in cancer therapy. O(6)AA induced DNA damage is subject to repair, which is executed by MGMT, AlkB homologous proteins (ABH) and base excision repair (BER). Although this review focuses on MGMT, the mechanism of repair by ABH and BER will also be discussed. Experimental systems, in which MGMT has been modulated, revealed that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine are major mutagenic, carcinogenic, recombinogenic, clastogenic and killing lesions. O(6)MeG-induced clastogenicity and cell death require MutS alpha-dependent mismatch repair (MMR), whereas O(6)-chloroethylguanine-induced killing occurs independently of MMR. Extensive DNA replication is required for O(6)MeG to provoke cytotoxicity. In MGMT depleted cells, O(6)MeG induces apoptosis almost exclusively, barely any necrosis, which is presumably due to the remarkable ability of secondarily formed DNA double-strand breaks (DSBs) to trigger apoptosis via ATM/ATR, Chk1, Chk2, p53 and p73. Depending on the cellular background, O(6)MeG activates both the death receptor and the mitochondrial apoptotic pathway. The inter-individual expression of MGMT in human lymphocytes is highly variable. Given the key role of MGMT in cellular defense, determination of MGMT activity could be useful for assessing a patient's drug sensitivity. MGMT is expressed at highly variable amounts in human tumors. In gliomas, a correlation was found between MGMT activity, MGMT promoter methylation and response to O(6)AA. Although the human MGMT gene is inducible by glucocorticoids and genotoxins such as radiation and alkylating agents, the role of this induction in the protection against carcinogens and the development of chemotherapeutic alkylating drug resistance are still unclear. Modulation of MGMT expression in tumors and normal tissue is currently being investigated as a possible strategy for improving cancer therapy.  相似文献   
55.
56.
Isoenzyme 2 of hexokinase functions in sugar sensing and glucose repression in Saccharomyces cerevisiae. The degree of in vivo phosphorylation of hexokinase 2 at serine-14 is inversely related to the extracellular glucose concentration [Vojtek, A. B., and Fraenkel, D. G. (1990) Eur. J. Biochem. 190, 371-375]; however, a physiological role of the modification causing the dissociation of the dimeric enzyme in vitro [as effected by a serine-glutamate exchange at position 14; Behlke et al. (1998) Biochemistry 37, 11989-11995] is unclear. This paper describes a comparative stopped-flow kinetic and sedimentation equilibrium analysis performed with native unphosphorylated hexokinase 2 and a permanently pseudophosphorylated glutamate-14 mutant enzyme to determine the functional consequences of phosphorylation-induced enzyme dissociation. The use of a dye-linked hexokinase assay monitoring proton generation allowed the investigation of the kinetics of glucose phosphorylation over a wide range of enzyme concentrations. The kinetic data indicated that monomeric hexokinase represents the high-affinity form of isoenzyme 2 for both glycolytic substrates. Inhibition of glucose phosphorylation by ATP [Moreno et al. (1986) Eur. J. Biochem. 161, 565-569] was only observed at a low enzyme concentration, whereas no inhibition was detected at the high concentration of hexokinase 2 presumed to occur in the cell. Pseudophosphorylation by glutamate substitution for serine-14 increased substrate affinity at high enzyme concentration and stimulated the autophosphorylation of isoenzyme 2. The possible role of hexokinase 2 in vivo phosphorylation at serine-14 in glucose signaling is discussed.  相似文献   
57.
Diva is a novel proapoptotic member of the Bcl-2 protein family which binds apoptosis activating factor-1 (APAF-1). Diva is identical with Boo which was identified as a novel antiapoptotic Bcl-2 family protein. Here, we report that Diva promotes the cell cycle exit of human glioma cells in response to serum deprivation and inhibits apoptosis of these cells induced by CD95 ligand or chemotherapeutic drugs. In glioma cells, Diva interferes with apoptotic signaling downstream of cytochrome c release, but upstream of caspase activation, consistent with an inhibitory effect on the mitochondrial amplification step involving the apoptosome and APAF-1.  相似文献   
58.
TGF-beta is a putative mediator of immunosuppression associated with malignant glioma and other types of cancer. Subtilisin-like proprotein convertases such as furin are thought to mediate TGF-beta processing. Here we report that human malignant glioma cell lines express furin mRNA and protein, exhibit furin-like protease (FLP) activity, and release active furin into the cell culture supernatant. FLP activity is not modulated by exogenous TGF-beta or neutralizing TGF-beta Abs. Exposure of LN-18 and T98G glioma cell lines to the furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone, inhibits processing of the TGF-beta1 and TGF-beta2 precursor molecules and, consequently, the release of mature bioactive TGF-beta molecules. Ectopic expression of PDX, a synthetic antitrypsin analog with antifurin activity, in the glioma cells inhibits FLP activity, TGF-beta processing, and TGF-beta release. Thus, subtilisin-like proprotein convertases may represent a novel target for the immunotherapy of malignant glioma and other cancers or pathological conditions characterized by enhanced TGF-beta bioactivity.  相似文献   
59.
60.
DNA transposition is an underlying process involved in the remodeling of genomes in all types of organisms. We analyze the multiple steps in cut-and-paste transposition using the bacterial transposon Tn5 as a model. This system is particularly illuminating because of the existence of structural, genetic, and biochemical information regarding the two participating specific macromolecules: the transposase and the 19-bp sequences that define the ends of the transposon. However, most of the insights should be of general interest because of similarities to other transposition-like systems such as HIV-1 DNA integration into the host genome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号