首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   574篇
  免费   53篇
  国内免费   3篇
  2022年   5篇
  2021年   9篇
  2020年   5篇
  2019年   9篇
  2018年   7篇
  2017年   15篇
  2016年   9篇
  2015年   19篇
  2014年   23篇
  2013年   43篇
  2012年   33篇
  2011年   26篇
  2010年   14篇
  2009年   15篇
  2008年   27篇
  2007年   21篇
  2006年   24篇
  2005年   21篇
  2004年   26篇
  2003年   29篇
  2002年   17篇
  2001年   15篇
  2000年   12篇
  1999年   11篇
  1998年   15篇
  1997年   11篇
  1996年   7篇
  1995年   6篇
  1993年   6篇
  1992年   7篇
  1991年   7篇
  1989年   11篇
  1988年   5篇
  1985年   3篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   4篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   8篇
  1971年   4篇
  1970年   7篇
  1969年   4篇
  1968年   4篇
  1966年   4篇
  1964年   5篇
  1962年   3篇
排序方式: 共有630条查询结果,搜索用时 640 毫秒
181.
Sugarcane yellow leaf syndrome, characterized by a yellowing of the leaf midrib followed by leaf necrosis and growth suppression, is caused by sugarcane yellow leaf virus (SCYLV). We produced SCYLV-resistant transgenic sugarcane from a susceptible cultivar (H62-4671) and determined the amount of virus present following inoculation. The transgenic plants were produced through biolistic bombardment of cell cultures with an untranslatable coat protein gene. Presence of the transgene in regenerated plants was confirmed using PCR and Southern blot analysis. The transgenic lines were inoculated by viruliferous aphids and the level of SCYLV in the plants was determined. Six out of nine transgenic lines had at least 103-fold lower virus titer than the non-transformed, susceptible parent line. This resistance level, as measured by virus titer and symptom development, was similar to that of a resistant cultivar (H78-4153). The selected SCYLV-resistant transgenic sugarcane lines will be available for integration of the resistance gene into other commercial cultivars and for quantification of viral effects on yield.  相似文献   
182.
Native mass spectrometry (MS) is a powerful technique for studying noncovalent protein-protein interactions. Here, native MS was employed to examine the noncovalent interactions involved in homodimerization of antibody half molecules (HL) in hinge-deleted human IgG4 (IgG4Δhinge). By analyzing the concentration dependence of the relative distribution of monomer HL and dimer (HL)(2) species, the apparent dissociation constant (K(D)) for this interaction was determined. In combination with site-directed mutagenesis, the relative contributions of residues at the CH3-CH3 interface to this interaction could be characterized and corresponding K(D) values quantified over a range of 10(-10)-10(-4) M. The critical importance of this noncovalent interaction in maintaining the intact dimeric structure was also proven for the full-length IgG4 backbone. Using time-resolved MS, the kinetics of the interaction could be measured, reflecting the dynamics of IgG4 HL exchange. Hence, native MS has provided a quantitative view of local structural features that define biological properties of IgG4.  相似文献   
183.
The photorespiratory Arabidopsis (Arabidopsis thaliana) mutant gld1 (now designated mtkas-1) is deficient in glycine decarboxylase (GDC) activity, but the exact nature of the genetic defect was not known. We have identified the mtkas-1 locus as gene At2g04540, which encodes beta-ketoacyl-[acyl carrier protein (ACP)] synthase (mtKAS), a key enzyme of the mitochondrial fatty acid synthetic system. One of its major products, octanoyl-ACP, is regarded as essential for the intramitochondrial lipoylation of several proteins including the H-protein subunit of GDC and the dihydrolipoamide acyltransferase (E2) subunits of two other essential multienzyme complexes, pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase. This view is in conflict with the fact that the mtkas-1 mutant and two allelic T-DNA knockout mutants grow well under nonphotorespiratory conditions. Although on a very low level, the mutants show residual lipoylation of H protein, indicating that the mutation does not lead to a full functional knockout of GDC. Lipoylation of the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase E2 subunits is distinctly less reduced than that of H protein in leaves and remains unaffected from the mtKAS knockout in roots. These data suggest that mitochondrial protein lipoylation does not exclusively depend on the mtKAS pathway of lipoate biosynthesis in leaves and may occur independently of this pathway in roots.  相似文献   
184.
Three commercial broiler pure lines were evaluated for associations of sire BF2 (major histocompatibility complex class I) alleles with progeny phenotypic traits. Significant BF2 associations with a subset of traits were observed in two lines. The BF2*21 allele was positively associated with antibody titre to infectious bursal disease virus in both lines. Other associations were line-specific.  相似文献   
185.
The rich fossil vertebrate record from the Beaufort Group, Main Karoo Basin, provides a global standard for mid‐Permian to Mid‐Triassic continental faunas. However, recent studies have demonstrated variability in the composition of contemporaneous faunas across Gondwana. This raises the question of how much the vertebrate faunas differ within the Karoo, where the taxonomic composition of vertebrate assemblage zones (AZs) is mostly considered to be uniform. Although fossil material is known from across the outcrop of the Beaufort Group, the lowest Beaufort strata have received little attention, particularly north of S31°10′. Here, we report two fossil tetrapod assemblages from the lowest Beaufort Group in the southern Free State Province, which represent the northernmost point at which the lowest Beaufort has been targeted for collecting. The lower assemblage is characterized by an abundance of the small dicynodont Eosimops and can thus be attributed to the Tapinocephalus AZ (Guadalupian), but the absence of dinocephalian or pareiasaurian material is unlike contemporaneous assemblages found further south. This suggests that the Tapinocephalus AZ was not uniform across the entire basin and highlights that the abundance, distribution and taxonomic composition of Karoo biozones may vary more than currently appreciated. The upper assemblage, characterized by the dicynodonts Oudenodon, Aulacephalodon and Dinanomodon, is attributable to the upper Cistecephalus AZ to lower Daptocephalus AZ. The juxtaposition of the lower Tapinocephalus AZ and upper Cistecephalus\lower Daptocephalus AZ in the southern Free State implies a stratigraphic gap from the Middle to Late Permian of up to 6 million years.  相似文献   
186.
187.
Climate change may reduce forest growth and increase forest mortality, which is connected to high carbon costs through reductions in gross primary production and net ecosystem exchange. Yet, the spatiotemporal patterns of vulnerability to both short‐term extreme events and gradual environmental changes are quite uncertain across the species’ limits of tolerance to dryness. Such information is fundamental for defining ecologically relevant upper limits of species tolerance to drought and, hence, to predict the risk of increased forest mortality and shifts in species composition. We investigate here to what extent the impact of short‐ and long‐term environmental changes determines vulnerability to climate change of three evergreen conifers (Scots pine, silver fir, Norway spruce) and two deciduous hardwoods (European beech, sessile oak) tree species at their southernmost limits of distribution in the Mediterranean Basin. Finally, we simulated future forest growth under RCP 2.6 and 8.5 emission scenarios using a multispecies generalized linear mixed model. Our analysis provides four key insights into the patterns of species’ vulnerability to climate change. First, site climatic marginality was significantly linked to the growth trends: increasing growth was related to less climatically limited sites. Second, estimated species‐specific vulnerability did not match their a priori rank in drought tolerance: Scots pine and beech seem to be the most vulnerable species among those studied despite their contrasting physiologies. Third, adaptation to site conditions prevails over species‐specific determinism in forest response to climate change. And fourth, regional differences in forests vulnerability to climate change across the Mediterranean Basin are linked to the influence of summer atmospheric circulation patterns, which are not correctly represented in global climate models. Thus, projections of forest performance should reconsider the traditional classification of tree species in functional types and critically evaluate the fine‐scale limitations of the climate data generated by global climate models.  相似文献   
188.
189.
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号