首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2649篇
  免费   126篇
  国内免费   2篇
  2777篇
  2023年   8篇
  2022年   15篇
  2021年   33篇
  2020年   30篇
  2019年   49篇
  2018年   70篇
  2017年   44篇
  2016年   104篇
  2015年   129篇
  2014年   125篇
  2013年   178篇
  2012年   216篇
  2011年   200篇
  2010年   138篇
  2009年   92篇
  2008年   163篇
  2007年   173篇
  2006年   206篇
  2005年   162篇
  2004年   128篇
  2003年   139篇
  2002年   116篇
  2001年   18篇
  2000年   10篇
  1999年   17篇
  1998年   20篇
  1997年   10篇
  1996年   11篇
  1995年   15篇
  1994年   11篇
  1993年   9篇
  1992年   5篇
  1991年   8篇
  1990年   17篇
  1989年   11篇
  1988年   12篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   10篇
  1980年   14篇
  1979年   7篇
  1978年   4篇
  1977年   6篇
  1973年   4篇
  1971年   2篇
  1967年   2篇
排序方式: 共有2777条查询结果,搜索用时 10 毫秒
61.
Bone marrow (BM) was for many years primarily regarded as the source of hematopoietic stem cells. In this review we discuss current views of the BM stem cell compartment and present data showing that BM contains not only hematopoietic but also heterogeneous non-hematopoietic stem cells. It is likely that similar or overlapping populations of primitive non-hematopoietic stem cells in BM were detected by different investigators using different experimental strategies and hence were assigned different names (e.g., mesenchymal stem cells, multipotent adult progenitor cells, or marrow-isolated adult multilineage inducible cells). However, the search still continues for true pluripotent stem cells in adult BM, which would fulfill the required criteria (e.g. complementation of blastocyst development). Recently our group has identified in BM a population of very small embryonic-like stem cells (VSELs), which express several markers characteristic for pluripotent stem cells and are found during early embryogenesis in the epiblast of the cylinder-stage embryo.  相似文献   
62.
Protein kinase CK2 is a highly conserved Ser/Thr protein kinase that is ubiquitous among eucaryotic organisms and appears to play an important role in many cellular functions. This enzyme in yeast has a tetrameric structure composed of two catalytic (α and/or α′) subunits and two regulatory β and β′ subunits. Previously, we have reported isolation from yeast cells four active forms of CK2, composed of αα′ββ′, α2ββ′, α′2ββ′ and a free α′-catalytic subunit. Now, we report that in Saccharomyces cerevisiae CK2 holoenzyme regulatory β subunit cannot substitute other β′ subunit and only both of them can form fully active enzymatic unit. We have examined the subunit composition of tetrameric complexes of yeast CK2 by transformation of yeast strains containing single deletion of the β or β′ regulatory subunits with vectors carrying lacking CKB1 or CKB2 genes. CK2 holoenzyme activity was restored only in cases when both of them were present in the cell. Additional, co-immunoprecypitation experiments show that polyadenylation factor Fip1 interacts with catalytic α subunits of CK2 and interaction with beta subunits in the holoenzyme decreases CK2 activity towards this protein substrate. These data may help to elucidate the role of yeast protein kinase CK2β/β′ subunits in the regulation of holoenzyme assembly and phosphotransferase activity.  相似文献   
63.
Several bacterial genera express proteins that contain collagen-like regions, which are associated with variable (V) non-collagenous regions. The streptococcal collagen-like proteins, Scl1 and Scl2, of group A Streptococcus (GAS) are members of this 'prokaryotic collagen' family, and they too contain an amino-terminal non-collagenous V region of unknown function. Here, we use recombinant rScl constructs, derived from several Scl1 and Scl2 variants, and affinity chromatography to identify Scl ligands present in human plasma. First, we show that Scl1, but not Scl2, proteins from different GAS serotypes bind the same ligand identified as apolipoprotein B (ApoB100), which is a major component of the low-density lipoprotein (LDL). Scl1 binding to purified ApoB100 and LDL is specific and concentration-dependent. Furthermore, the non-collagenous V region of the Scl1 protein is responsible for LDL/ApoB100 binding because only those rScls, constructed by domain swapping, which contain the V region from Scl1 proteins, were able to bind to ApoB100 and LDL ligands, and this binding was inhibited by antibodies directed against the Scl1-V region. Electron microscopy images of Scl1-LDL complexes showed that the globular V domain of Scl1 interacted with spherical particles of LDL. Importantly, live M28-type GAS cells absorbed plasma LDL on the cell surface and this binding depended on the surface expression of the Scl1.28, but not Scl2.28, protein. Phylogenetic analysis showed that the non-collagenous globular domains of Scl1 and Scl2 evolved independently to form separate lineages, which differ in amino acid sequence, and these differences may account for the variations in binding patterns of Scl1 and Scl2 proteins. Present studies provide insight into the structure-function relationship of the Scl proteins and also underline the importance of lipoprotein binding by GAS.  相似文献   
64.
Phospholipases A2 (PLA2) are a family of enzymes that catalyze the hydrolysis of the sn-2 ester bond of glycerophospholipids liberating lysophospholipids and free fatty acids; important second messengers involved in atherogenesis. Plasma PAF-acetylhydrolase (PAF-AH) or Lp-PLA2 is a Ca2+-independent PLA2 which is produced by monocyte-derived macrophages and by activated platelets, and circulates in plasma associated with lipoproteins. PAF-AH catalyzes the removal of the acetyl/short acyl group at the sn-2 position of PAF and oxidized phospholipids produced during inflammation and oxidative stress. In humans, PAF-AH is mainly associated with small dense LDL and to a lesser extent with HDL and with lipoprotein(a). PAF-AH is N-glycosylated prior to secretion which diminishes its association with HDL raising the question of its distribution between the proatherogenic LDL vs the antiatherogenic HDL. Hypercholesterolemic patients have higher plasma PAF-AH activity which is reduced upon hypolipidemic therapy. PAF-AH specific inhibitor darapladib stabilizes human and swine plaques, therefore challenging the antiatherogenic potential of PAF-AH shown in small animal models.  相似文献   
65.
In this consensus paper resulting from a meeting that involved representatives from more than 20 European partners, we recommend the foundation of an expert group (European Steering Committee) to assess the potential benefits and draw-backs of genome editing (off-targets, mosaicisms, etc.), and to design risk matrices and scenarios for a responsible use of this promising technology. In addition, this European steering committee will contribute in promoting an open debate on societal aspects prior to a translation into national and international legislation.  相似文献   
66.
An Escherichia coli strain bearing the dnaQ49 mutation, which results in a defective s subunit of DNA polymerase III, and carrying the lexA71 mutation, which causes derepression of the SOS regulon, is totally unable to maintain high-copy-number plasmids containing the umuDC operon. The strain is also unable to maintain the pAN4 plasmid containing a partial deletion of the umuD gene but retaining the wild-type umuC gene. These results suggest that a high cellular level of UmuC is exceptionally harmful to the defective DNA polymerase III of the dnaQ49 mutant. We have used this finding as a basis for selection of new plasmid umuC mutants. The properties of two such mutants, bearing the umuC61 or umuC95 mutation, are described in detail. In the umuC122:: Tn 5 strain harbouring the mutant plasmids, UV-induced mutagenesis is severely decreased compared to that observed with the parental umuDC + plasmid. Interestingly, while the frequency of UV-induced GC → AT transitions is greatly reduced, the frequency of AT → TA transversions is not affected. Both mutant plasmids bear frameshift mutations within the same run of seven A residues present in umuC +; in umuC61 the run is shortened to six A whereas in umuC95 is lengthened to eight A. We have found in both umuC61 and umuC95 that translation is partially restored to the proper reading frame. We propose that under conditions of limiting amounts of UmuC, the protein preferentially facilitates processing of only some kinds of UV-induced lesions.  相似文献   
67.
Our objective was to examine the ability of nucleate and anucleate fragments of artificially activated mouse eggs to transform sperm nucleus into male pronucleus. To this end, zona-free oocytes in metaphase II were activated by ethanol and bisected into halves (one with the spindle, the other anucleate) either within 10 to 20 min (series A) or 3 or 5 hr later (series B). In series A, the fragments were inseminated 3,5, and 8 h after activation, and in series B. 3 and 5 h after activation. Both nucleate and anucleate fragments lose the capability of transforming sperm nucleus into fully formed pronucleus sometime between 3 and 5 h after activation. In 8 h old parthenogenetic fragments, the majority of sperm nuclei remain unchanged or begin decondensation but never reach the stage of an early pronucleus. In over 1/3 of anucleate fragments of this age group, sperm nuclei develop defectively: chromatin decondenses inside the persisting nuclear envelope. In other experimental groups, the incidence of these abnormal sperm nuclei varies between 0 and 10%. In general, the anuclcate fragments retain the capability to transform sperm nuclei (fully or partially) longer than their nuclear counterparts. This difference may be accounted for by a different level of substances required for pronuclcar growth (extrachromosomal constituents of the germinal vesicle and nuclear lamins): high and constant in the cytoplasm of anucleate egg halves and low and progressively decreasing in the nucleate halves because of their putative uptake by the female pronucleus. However, the cytoplasmic factors responsible for the initial stages of transformation (nuclear envelope breakdown, chromatin decondensation) become eventually inactivated both in the presence and in the absence of a female pronucleus.  相似文献   
68.
Expression of the Saccharomyces cerevisiae DPM1 gene (coding for dolichylphosphate mannose synthase) in Trichoderma reesei (Hypocrea jecorina) increases the intensity of protein glycosylation and secretion and causes ultrastructural changes in the fungal cell wall. In the present work, we undertook further biochemical and morphological characterization of the DPM1-expressing T. reesei strains. We established that the carbohydrate composition of the fungal cell wall was altered with an increased amount of N-acetylglucosamine, suggesting an increase in chitin content. Calcofluor white staining followed by fluorescence microscopy indicated changes in chitin distribution. Moreover, we also observed a decreased concentration of mannose and alkali-soluble beta-(1,6) glucan. A comparison of protein secretion from protoplasts with that from mycelia showed that the cell wall created a barrier for secretion in the DPM1 transformants. We also discuss the relationships between the observed changes in the cell wall, increased protein glycosylation, and the greater secretory capacity of T. reesei strains expressing the yeast DPM1 gene.  相似文献   
69.
70.
The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL‐10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion of IFNλ4 is impaired compared to that of IFNλ3, and this impairment is not due to a weak signal peptide, which was previously believed. We found that IFNλ4 gets N‐linked glycosylated and that this glycosylation is required for secretion. Nevertheless, this glycosylation is not required for activity. Together, these findings result in the paradox that IFNλ4 is strongly antiviral but a disadvantage during HCV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号