全文获取类型
收费全文 | 95379篇 |
免费 | 385篇 |
国内免费 | 885篇 |
专业分类
96649篇 |
出版年
2023年 | 8篇 |
2022年 | 16篇 |
2021年 | 34篇 |
2020年 | 30篇 |
2019年 | 50篇 |
2018年 | 11880篇 |
2017年 | 10696篇 |
2016年 | 7530篇 |
2015年 | 706篇 |
2014年 | 394篇 |
2013年 | 456篇 |
2012年 | 4383篇 |
2011年 | 12962篇 |
2010年 | 12099篇 |
2009年 | 8295篇 |
2008年 | 9917篇 |
2007年 | 11501篇 |
2006年 | 449篇 |
2005年 | 654篇 |
2004年 | 1082篇 |
2003年 | 1148篇 |
2002年 | 884篇 |
2001年 | 269篇 |
2000年 | 168篇 |
1999年 | 38篇 |
1998年 | 27篇 |
1997年 | 31篇 |
1996年 | 20篇 |
1995年 | 15篇 |
1994年 | 17篇 |
1993年 | 38篇 |
1992年 | 25篇 |
1991年 | 44篇 |
1990年 | 22篇 |
1989年 | 19篇 |
1988年 | 29篇 |
1987年 | 17篇 |
1985年 | 8篇 |
1984年 | 12篇 |
1983年 | 20篇 |
1982年 | 8篇 |
1981年 | 10篇 |
1980年 | 15篇 |
1979年 | 7篇 |
1972年 | 248篇 |
1971年 | 276篇 |
1965年 | 13篇 |
1962年 | 24篇 |
1944年 | 12篇 |
1940年 | 10篇 |
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
991.
Lingna Kong Xinying Song Jin Xiao Haojie Sun Keli Dai Caixia Lan Pawan Singh Chunxia Yuan Shouzhong Zhang Ravi Singh Haiyan Wang Xiue Wang 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2018,131(8):1793-1806
Key message
A complete set wheat-R. ciliaris disomic addition lines (DALs) were characterized and the homoeologous groups and genome affinities of R. ciliaris chromosomes were determined.Abstract
Wild relatives are rich gene resources for cultivated wheat. The development of alien addition chromosome lines not only greatly broadens the genetic diversity, but also provides genetic stocks for comparative genomics studies. Roegneria ciliaris (genome ScScYcYc), a tetraploid wild relative of wheat, is tolerant or resistant to many abiotic and biotic stresses. To develop a complete set of wheat-R. ciliaris disomic addition lines (DALs), we undertook a euplasmic backcrossing program to overcome allocytoplasmic effects and preferential chromosome transmission. To improve the efficiency of identifying chromosomes from Sc and Yc, we established techniques including sequential genomic in situ hybridization/fluorescence in situ hybridization (FISH) and molecular marker analysis. Fourteen DALs of wheat, each containing one pair of R. ciliaris chromosomes pairs, were characterized by FISH using four repetitive sequences [pTa794, pTa71, RcAfa and (GAA)10] as probes. One hundred and sixty-two R. ciliaris-specific markers were developed. FISH and marker analysis enabled us to assign the homoeologous groups and genome affinities of R. ciliaris chromosomes. FHB resistance evaluation in successive five growth seasons showed that the amphiploid, DA2Yc, DA5Yc and DA6Sc had improved FHB resistance, indicating their potential value in wheat improvement. The 14 DALs are likely new gene resources and will be phenotyped for more agronomic performances traits.992.
In this study, a method combining Raman spectroscopy with chemometric analysis was developed for detection of phage presence in raw milk and discrimination of Streptococcus thermophilus and Lactobacillus bulgaricus phages which are among the main phages causing problems in dairy industry. For this purpose, S. thermophilus and L. bulgaricus phages were added into raw milk separately, and then some pretreatments such as fat separation, removal of casein, and filtration were applied to the raw milk samples. Raman spectra of the samples were collected and then analyzed using principal component analysis in order to discriminate these phages in raw milk. In the next step, dilutions of S. thermophilus phages in pretreated raw milk were prepared, and Raman spectra were collected. These spectra were analyzed by using partial least squares method to quantify phages in low titer. Consequently, it has been demonstrated that S. thermophilus and L. bulgaricus phages, which have titers sufficient to fail the fermentation (~?107 pfu/mL) and have lower titers (102–103 pfu/mL), could be discriminated from antibiotic and each other. Additionally, low concentrations of S. thermophilus phages (102 pfu/mL) could be detected through Raman spectroscopy with a short analysis time (60 min) and high coefficient of determination (R2) values for both calibration (0.985) and validation (0.906) with a root mean square error of calibration of 70.54 and root mean square error of prediction of 165.47. However, a lower success was achieved with L. bulgaricus phages and the obtained coefficient of determination values were not sufficiently high (0.649). 相似文献
993.
Marco Graziano Raul Benito Josep V. Planas Arjan P. Palstra 《BMC developmental biology》2018,18(1):10
Background
Male European seabass, already predominant (~?70%) in cultured stocks, show a high incidence (20–30%) of precocious sexual maturation under current aquaculture practices, leading to important economic losses for the industry. In view of the known modulation of reproductive development by swimming exercise in other teleost species, we aimed at investigating the effects of sustained swimming on reproductive development in seabass males during the first year of life in order to determine if swimming could potentially reduce precocious sexual maturation.Methods
Pre-pubertal seabass (3.91?±?0.22 g of body weight (BW)) were subjected to a 10 week swimming regime at their optimal swimming speed (Uopt) in an oval-shaped Brett-type flume or kept at rest during this period. Using Blazka-type swim tunnels, Uopt was determined three times during the course of the experiment: 0.66 m s??1 at 19?±?1 g BW, 10.2?±?0.2 cm of standard length (SL) (week 1); 0.69 m s??1 at 38?±?3 g BW, 12.7?±?0.3 cm SL (week 5), and also 0.69 m s??1 at 77?±?7 g BW, 15.7?±?0.5 cm SL (week 9). Every 2 weeks, size and gonadal weight were monitored in the exercised (N?=?15) and non-exercised fish (N?=?15). After 10 weeks, exercised and non-exercised males were sampled to determine plasma 11-ketotestosterone levels, testicular mRNA expression levels of genes involved in steroidogenesis and gametogenesis by qPCR, as well as the relative abundance of germ cells representing the different spermatogenic stages by histological examination.Results
Our results indicate that sustained swimming exercise at Uopt delays testicular development in male European seabass as evidenced by decreased gonado-somatic index, slower progression of testicular development and by reduced mRNA expression levels of follicle stimulating hormone receptor (fshR), 3-beta-hydroxysteroid dehydrogenase (3βhsd), 11-beta hydroxysteroid dehydrogenase (11βhsd), estrogen receptor-beta (erβ2), anti-mullerian hormone (amh), structural maintenance of chromosomes protein 1B (smc1β), inhibin beta A (inhba) and gonado-somal derived factor 1 (gsdf1) in exercised males as compared with the non-exercised males.Conclusions
Swimming exercise may represent a natural and non-invasive tool to reduce the incidence of sexually precocious males in seabass aquaculture.994.
Yahui Gao Jianping Jiang Shaohua Yang Jie Cao Bo Han Yachun Wang Yi Zhang Ying Yu Shengli Zhang Qin Zhang Lingzhao Fang Bonnie Cantrell Dongxiao Sun 《BMC genomics》2018,19(1):972
Background
Paratuberculosis is a contagious, chronic and enteric disease in ruminants, which is caused by Mycobacterium avium subspecies paratuberculosis (MAP) infection, resulting in enormous economic losses worldwide. There is currently no effective cure for MAP infection or a vaccine, it is thus important to explore the genetic variants that contribute to host susceptibility to infection by MAP, which may provide a better understanding of the mechanisms of paratuberculosis and benefit animal genetic improvement. Herein we performed a genome-wide association study (GWAS) to identify genomic regions and candidate genes associated with susceptibility to MAP infection in dairy cattle.Results
Using Illumina Bovine 50?K (54,609 SNPs) and GeneSeek HD (138,893 SNPs) chips, two analytical approaches were performed, GRAMMAR-GC and ROADTRIPS in 937 Chinese Holstein cows, among which individuals genotyped by the 50?K chip were imputed to HD SNPs with Beagle software. Consequently, 15 and 11 significant SNPs (P?<?5?×?10??5) were identified with GRAMMAR-GC and ROADTDRIPS, respectively. A total of 10 functional genes were in proximity to (i.e., within 1?Mb) these SNPs, including IL4, IL5, IL13, IRF1, MyD88, PACSIN1, DEF6, TDP2, ZAP70 and CSF2. Functional enrichment analysis showed that these genes were involved in immune related pathways, such as interleukin, T cell receptor signaling pathways and inflammatory bowel disease (IBD), implying their potential associations with susceptibility to MAP infection. In addition, by examining the publicly available cattle QTLdb, a previous QTL for MAP was found to be overlapped with one of regions detected currently at 32.5?Mb on BTA23, where the TDP2 gene was anchored.Conclusions
In conclusion, we identified 26 SNPs located on 15 chromosomes in the Chinese Holstein population using two GWAS strategies with high density SNPs. Integrated analysis of GWAS, biological functions and the reported QTL information helps to detect positional candidate genes and the identification of regions associated with susceptibility to MAP traits in dairy cattle.995.
Background
Eukaryotic translation initiation factor 1A (eIF1A) is universally conserved in all organisms. It has multiple functions in translation initiation, including assembly of the ribosomal pre-initiation complexes, mRNA binding, scanning, and ribosomal subunit joining. eIF1A binds directly to the small ribosomal subunit, as well as to several other translation initiation factors. The structure of an eIF1A homolog, the eIF1A domain-containing protein (eIF1AD) was recently determined but its biological functions are unknown. Since eIF1AD has a known structure, as well as a homolog, whose structure and functions have been extensively studied, it is a very attractive target for sequence and structure analysis.Results
Structure/sequence analysis of eIF1AD found significant conservation in the surfaces corresponding to the ribosome-binding surfaces of its paralog eIF1A, including a nearly invariant surface-exposed tryptophan residue, which plays an important role in the interaction of eIF1A with the ribosome. These results indicate that eIF1AD may bind to the ribosome, similar to its paralog eIF1A, and could have roles in ribosome biogenenesis or regulation of translation. We identified conserved surfaces and sequence motifs in the folded domain as well as the C-terminal tail of eIF1AD, which are likely protein-protein interaction sites. The roles of these regions for eIF1AD function remain to be determined. We have also identified a set of trypanosomatid-specific surface determinants in eIF1A that could be a promising target for development of treatments against these parasites.Conclusions
The results described here identify regions in eIF1A and eIF1AD that are likely to play major functional roles and are promising therapeutic targets. Our findings and hypotheses will promote new research and help elucidate the functions of eIF1AD.996.
Background
The chloroplast of eukaryotic microalgae such as Chlamydomonas reinhardtii is a potential platform for metabolic engineering and the production of recombinant proteins. In industrial biotechnology, inducible expression is often used so that the translation or function of the heterologous protein does not interfere with biomass accumulation during the growth stage. However, the existing systems used in bacterial or fungal platforms do not transfer well to the microalgal chloroplast. We sought to develop a simple inducible expression system for the microalgal chloroplast, exploiting an unused stop codon (TGA) in the plastid genome. We have previously shown that this codon can be translated as tryptophan when we introduce into the chloroplast genome a trnWUCA gene encoding a plastidial transfer RNA with a modified anticodon sequence, UCA.Results
A mutated version of our trnWUCA gene was developed that encodes a temperature-sensitive variant of the tRNA. This allows transgenes that have been modified to contain one or more internal TGA codons to be translated differentially according to the culture temperature, with a gradient of recombinant protein accumulation from 35 °C (low/off) to 15 °C (high). We have named this the CITRIC system, an acronym for cold-inducible translational readthrough in chloroplasts. The exact induction behaviour can be tailored by altering the number of TGA codons within the transgene.Conclusions
CITRIC adds to the suite of genetic engineering tools available for the microalgal chloroplast, allowing a greater degree of control over the timing of heterologous protein expression. It could also be used as a heat-repressible system for studying the function of essential native genes in the chloroplast. The genetic components of CITRIC are entirely plastid-based, so no engineering of the nuclear genome is required.997.
Tao Cong Jinping Gu Alex Pui-Wai Lee Zhijuan Shang Yinghui Sun Qiaobing Sun Hong Wei Na Chen Siyao Sun Tingting Fu 《Cardiovascular ultrasound》2018,16(1):13
Background
Atrial fibrillation (AF) can result in atrial functional mitral regurgitation (MR), but the mechanism remains controversial. Few data about the relationship between the 3-dimensional morphology of the MV and the degree of MR in AF exist.Methods
Real-time 3-dimensional transesophageal echocardiography (3D-TEE) of the MV was acquired in 168 patients with AF (57.7% persistent AF), including 25 (14.9%) patients with moderate to severe MR (the MR+ group) and 25 patients without AF as controls. The 3-dimensional geometry of the MV apparatus was acquired using dedicated quantification software.Results
Compared with the group of patients with no or mild MR (the MR- group) and the controls, the MR+ group had a larger left atrium (LA), a more dilated mitral annulus (MA), a reduced annular height to commissural width ratio (AHCWR), indicating flattening of the annular saddle shape, and greater leaflet surfaces and tethering. MR severity was correlated with the MA area (r2?=?0.43, P?<?0.01) and the annulus circumference (r2?=?0.38, P?<?0.01). A logistic regression analysis indicated that the MA area (OR: 1.02, 95% CI: 1.01–1.03, P?<?0.01), AHCWR (OR: 0.24, 95% CI: 0.14–0.35, P?=?0.04) and MV tenting volume (OR: 3.24, 95% CI: 1.16–9.08, P?=?0.03) were independent predictors of MR severity in AF patients.Conclusions
The mechanisms of “atrial functional MR” are complex and include dilation of the MA, flattening of the annular saddle shape and greater leaflet tethering.998.
Anna Skorczyk-Werner Anna Wawrocka Natalia Kochalska Maciej Robert Krawczynski 《Orphanet journal of rare diseases》2018,13(1):221
Background
Choroideremia (CHM) is a rare X-linked recessive retinal dystrophy characterized by progressive chorioretinal degeneration in the males affected. The symptoms include night blindness in childhood, progressive peripheral vision loss and total blindness in the late stages. The disease is caused by mutations in the CHM gene encoding Rab Escort Protein 1 (REP-1). The aim of the study was to identify the molecular basis of choroideremia in five families of Polish origin.Methods
Six male patients from five unrelated families of Polish ethnicity, who were clinically diagnosed with choroideremia, were examined in this study. An ophthalmologic examination performed in all the probands included: best-corrected visual acuity, slit-lamp examination, funduscopy, fluorescein angiography and perimetry. The entire coding region encompassing 15 exons and the flanking intronic sequences of the CHM gene were amplified with PCR and directly sequenced in all the patients.Results
Five variants in the CHM gene were identified in the five families examined. Two of the variants were new: c.1175dupT and c.83C?>?G, while three had been previously reported.Conclusions
This study provides the first molecular genetic characteristics of patients with choroideremia from the previously unexplored Polish population.999.
Virginia K. Duwe Ludo A. H. Muller Katja Reichel Elke Zippel Thomas Borsch Sascha A. Ismail 《Conservation Genetics》2018,19(3):527-543
Plant diversity is decreasing mainly through anthropogenic factors like habitat fragmentation, which lead to spatial separation of remaining populations and thereby affect genetic diversity and structure within species. Twenty populations of the threatened grassland species Crepis mollis were studied across Germany (578 individual plants) based on microsatellite genotyping. Genetic diversity was significantly higher in populations from the Alpine region than from the Central Uplands. Furthermore, genetic diversity was significantly positively correlated with population size. Despite smaller populations in the Uplands there were no signs of inbreeding. Genetic differentiation between populations was moderate (F ST?=?0.09) and no isolation by distance was found. In contrast, large-scale spatial genetic structure showed a significant decrease of individual pairwise relatedness, which was higher than in random pairs up to 50 km. Bayesian analyses detected three genetic clusters consistent with two regions in the Uplands and an admixture group in the Alpine region. Despite the obvious spatial isolation of the currently known populations, the absence of significant isolation by distance combined together with moderate population differentiation indicates that drift rather than inter-population gene flow drives differentiation. The absence of inbreeding suggests that pollination is still effective, while seed dispersal by wind is likely to be impaired by discontinuous habitats. Our results underline the need for maintaining or improving habitat quality as the most important short term measure for C. mollis. For maintaining long-term viability, establishing stepping stone habitats or, where this is not possible, assisted gene flow needs to be considered. 相似文献
1000.
Matheus O. Freitas Marilia Previero Carolina V. Minte-Vera Henry L. Spach Ronaldo B. Francini-Filho Rodrigo L. Moura 《Environmental Biology of Fishes》2018,101(1):79-94
The reproductive biology of Epinephelus morio (red grouper) and Mycteroperca bonaci (black grouper) were evaluated based on 533 specimens collected from artisanal fisheries landings in the Abrolhos Bank, Brazil, between May 2005 and September 2012. Sex ratio for the black grouper was 1:14 (n = 155 females and 11 males; 26.1–147 cm TL) and 1:10 for the red grouper (n = 334 females and 33 males; 15.0–96.0 cm TL). For both species, highest values of the gonadosomatic index (GSI) for females were recorded between July and October, indicating spawning during the austral winter. The length at first maturity (L50) for females was estimated at 62.0 and 47.0 cm TL for the black and red grouper, respectively. Batch fecundity based on TL and TW ranged from 2 to 15.4?106 and 1.5 to 13.7?106 for the black and red grouper, respectively. Interviews with experienced fishers revealed that spawning seasons of both groupers are largely unrecognized. Results demonstrate a positive relationship between GSI peaks, lower temperatures and stronger winds. The information provided herein may help decision-making regarding fisheries management and conservation for E. morio and M. bonaci at various levels of governance in the Abrolhos Bank, the region with the largest and richest coralline reefs in the South Atlantic. 相似文献