首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   40篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   9篇
  2017年   8篇
  2016年   15篇
  2015年   18篇
  2014年   18篇
  2013年   25篇
  2012年   23篇
  2011年   35篇
  2010年   13篇
  2009年   19篇
  2008年   17篇
  2007年   37篇
  2006年   18篇
  2005年   17篇
  2004年   18篇
  2003年   11篇
  2002年   10篇
  2001年   14篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1979年   3篇
  1978年   4篇
  1976年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
  1969年   7篇
  1968年   4篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
  1963年   2篇
排序方式: 共有444条查询结果,搜索用时 31 毫秒
71.
The variability of terminal restriction fragment polymorphism analysis applied to complex microbial communities was assessed statistically. Recent technological improvements were implemented in the successive steps of the procedure, resulting in a standardized procedure which provided a high level of reproducibility.Terminal restriction fragment length polymorphism (T-RFLP) analysis is a robust, high-resolution, high-throughput, rapid, and cost-effective method for studying the structures of microbial communities (3, 10). T-RFLP analysis is based on group-specific variations in the restriction patterns of molecular markers essential to all life forms (i.e., rRNA genes) or unique to a particular physiological group (e.g., ammonia-oxidizing and sulfate-reducing bacteria) which generate specific and characteristic terminal restriction fragment (T-RF) patterns from mixed fluorescently labeled amplicon pools of environmental nucleic acid extracts. This analysis has developed recently into one of the favorite techniques for the rapid assessment of the structures of bacterial communities. Refinements of the technique and data analysis have been introduced (5, 8, 11, 14, 20-22). Improvements have been made to the sampling procedure (16), to the DNA extraction and amplification steps (17, 19, 26), and to enzymatic restriction digestion (2, 6). Statistical analysis has also been improved in the treatment of the raw data and the selection of logical binning and clustering algorithms resulting, for instance, in the alignment of replicate profiles into a single consensus profile (1, 13). Finally, recent developments have been proposed for the statistical analysis of the profiles using multivariate techniques from numerical ecology (4, 7, 9, 23-25, 27).Both the resolution and reproducibility of T-RFLP analysis have already been assessed using artificially created bacterial communities (12) comprising up to 30 different clones or bacterial species. However, to the best knowledge of the authors, so far no study has been conducted to assess statistically the dissimilarities obtained in the electropherogram profiles when more complex bacterial communities from natural samples have been analyzed. The main purpose of this report is then to assess statistically the resolution and reproducibility of a standardized T-RFLP protocol, as applied to the analysis of 16S rRNA gene pools from complex communities. The statistical analysis was carried out at successive steps of the procedure, from the initial PCR amplification to the sizing of the obtained T-RFs.The samples used for this study were taken from a sequencing batch bubble column reactor inoculated with activated sludge from a municipal wastewater treatment plant and operated in such a way as to produce aerobic granular sludge able to remove carbon, nitrogen, and phosphate from an artificial wastewater sample containing acetate, ammonium, and phosphate. Samples were taken at different steps of operation of the reactor systems. The standardized protocol used in the present report is presented in detail in the supplemental material. Note that the methodology implied in the extraction of the total bacterial DNA is not discussed in the context of this work. The T-RFLP protocol was conceived on the basis of recent developments made in the protocol at various stages of the T-RFLP analysis and was implemented with optimized procedures allowing us to minimize potential biases and to ensure a high degree of reproducibility. Whenever possible, technological advances in instrumentation were included, as for instance with the application of optimized electrophoresis conditions and the use of more complex sizing standards and brighter fluorochromes. The use of relatively large and precise amounts of digested PCR fragments (200 ng per replica) also contributed to a drastic reduction of the background noise, which was usually observed to be equal to only about 10 relative fluorescence units (RFU).Numerical treatment and analysis of the data were carried out with R (R Development Core Team) and the Vegan library (18). We used asymmetric dissimilarity indices to compare T-RFLP profiles using the Jaccard formula, so that the double absence of a T-RF was not considered a resemblance between two profiles (15). The Jaccard dissimilarity was applied to binary data, i.e., the presence/absence of T-RFs. Moreover, to take into account the relative intensity of T-RF areas within each profile in the comparison, we used Ruzicka dissimilarity, which is the Jaccard index applied to quantitative data. Both dissimilarity measures range from 0 (identical profiles) to 1 (different profiles with no T-RF in common). Numerical treatment of the data was also carried out on the modified results, so as to reduce potential biases induced by the inconsistent presence of T-RFs showing very small amounts of fluorescence. T-RF signals just above the detection threshold (low signal-to-noise ratio) can be a cause of suboptimal fingerprinting reproducibility. For this reason, small-area T-RFs (<300 RFU) were suppressed when they were not present in all replicate profiles of a sample.  相似文献   
72.
A mini-compression jig was built to perform in situ tests on bovine trabecular bone monitored by micro-MRI. The MRI antenna provided an isotropic resolution of 78 μm that allows for a volume correlation method to be used. Three-dimensional displacement fields are then evaluated within the bone sample during the compression test. The performances of the correlation method are evaluated and discussed to validate the technique on trabecular bone. By considering correlation residuals and estimates of acquisition noise, the measured results are shown to be trustworthy. By analyzing average strain levels for different interrogation volumes along the loading direction, it is shown that the sample size is less than that of a representative volume element. This study shows the feasibility of the 3D-displacement and strain field analyses from micro-MRI images. Other biological tissues could be considered in future work.  相似文献   
73.
Because melanomas are intrinsically resistant to conventional radiotherapy and chemotherapy, many alternative treatment approaches have been developed such as biochemotherapy and immunotherapy. The most common cause of multidrug resistance (MDR) in human cancers is the expression and function of one or more A TP‐b inding c assette (ABC) transporters that efflux anticancer drugs from cells. Melanoma cells express a group of ABC transporters (such as ABCA9, ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, and ABCD1) that may be associated with the resistance of melanoma cells to a broad range of anticancer drugs and/or of melanocytes to toxic melanin intermediates and metabolites. In this review, we propose a model (termed the ABC‐M model) in which the intrinsic MDR of melanoma cells is at least in part because of the transporter systems that may also play a critical role in reducing the cytotoxicity of the melanogenic pathway in melanocytes. The ABC‐M model suggests molecular strategies to reverse MDR function in the context of the melanogenic pathway, which could open therapeutic avenues towards the ultimate goal of circumventing clinical MDR in patients with melanoma.  相似文献   
74.
A new proteomics technique for analyzing 3-nitrotyrosine-containing peptides is presented here. This technique is based on the combined fractional diagonal chromatography peptide isolation procedures by which specific classes of peptides are isolated following a series of identical reverse-phase HPLC separation steps. Here dithionite is used to reduce 3-nitrotyrosine to 3-aminotyrosine peptides, which thereby become more hydrophilic. Our combined fractional diagonal chromatography technique was first applied to characterize tyrosine nitration in tetranitromethane-modified BSA and further led to a high quality list of 335 tyrosine nitration sites in 267 proteins in a peroxynitrite-treated lysate of human Jurkat cells. We then analyzed a serum sample of a C57BL6/J mouse in which septic shock was induced by intravenous Salmonella infection and identified six in vivo nitration events in four serum proteins, thereby illustrating that our technique is sufficiently sensitive to identify rare in vivo tyrosine nitration sites in a very complex background.Nitration of tyrosine to 3-nitrotyrosine is one of several protein modifications occurring during oxidative stress (1, 2). This modification is considered as a two-step process in which a tyrosine radical is first formed followed by the addition of NO2 yielding 3-nitrotyrosine. One of the mechanisms through which tyrosine can be nitrated is via the peroxynitrite radical (ONOO); however, alternative pathways exist such as nitration by hemoperoxidases in the presence of hydrogen peroxide and nitrite (3) and reaction of the tyrosyl radical with nitric oxide yielding 3-nitrosotyrosine, which can be further oxidized to 3-nitrotyrosine.Nitration of protein-bound tyrosines can have important implications on the structure and activity of proteins (46) and is linked to a variety of pathological conditions such as Alzheimer disease (7) and atherosclerosis (8). Proteins containing 3-nitrotyrosine residues have mainly been identified by one- or two-dimensional PAGE followed by Western blotting using 3-nitrotyrosine-specific antibodies (9) or following affinity enrichment (10, 11). However, rather few in vivo tyrosine nitration sites have thus far been mapped onto proteins, and hence, the exact sites of in vivo nitration remain elusive. This is highly likely due to the overall low abundance of this modification as was recently illustrated by the identification of only 31 nitration sites in 29 proteins in a comprehensive analysis of mouse brain tissue covering 7,792 proteins (12). Furthermore, it was estimated that in diseased cells or organs the number of nitrated tyrosines should be as low as 0.00001–0.001% of all tyrosines (5), numbers that clearly indicate the need to enrich for 3-nitrotyrosine peptides prior to mass spectrometric analysis. In addition, several MS and MS/MS detection problems for 3-nitrotyrosine peptides were reported (13, 14) that also influence identification of such peptides.Recently, a procedure for enriching 3-nitrotyrosine peptides was described (10). In brief, reduced and alkylated proteins were digested after which primary amino groups were blocked by acetylation. Nitrotyrosines were then reduced to aminotyrosine using dithionite (15), unveiling novel primary amino groups on which sulfhydryl groups were coupled that allowed binding peptides to thiopropyl-Sepharose beads. In contrast to an earlier affinity-based isolation protocol (16), this improved enrichment procedure was more effective and led to the characterization of 150 tyrosine nitration sites in 102 proteins using a total of 3.1 mg of a mouse brain homogenate sample that was in vitro nitrated (10). However, this procedure requires many modification steps, which, when incomplete, will introduce artifacts (see “Results”). Among others, these explain the rather low number of identified nitrated tyrosines peptides using the high amount of starting material that was in vitro nitrated.Our laboratory adapted diagonal chromatography (17) for contemporary mass spectrometry-driven proteomics. Central in our combined fractional diagonal chromatography (COFRADIC1 (18)) approach is a chemical or enzymatic step that changes the reverse-phase column retention properties of a set of peptides such that these can be isolated. Among others, we developed COFRADIC protocols for isolating peptides carrying amino acid modifications such as phosphorylation (19), N-glycosylation (20), and sialylation (21) or peptides that are the result of protein processing (2224). Here we describe a COFRADIC procedure for sorting peptides carrying nitrated tyrosines. Peptide sorting is based on a hydrophilic shift after reducing the nitro group to its amino counterpart. The applicability of COFRADIC for analyzing this modification is illustrated by characterization of four 3-nitrotyrosines in BSA treated with tetranitromethane, the mapping of 335 different nitration sites in 267 different proteins starting from 300 μg of an in vitro peroxynitrite (ONOO)-treated Jurkat lysate, and the identification of six unique nitrated tyrosine residues in four serum proteins in a mouse sepsis model.  相似文献   
75.
Lymphocyte homeostasis is determined by a critical balance between cell proliferation and death, an equilibrium which is deregulated in bovine leukemia virus (BLV)-infected sheep. We have previously shown that an excess of proliferation occurs in lymphoid tissues and that the peripheral blood population is prone to increased cell death. To further understand the mechanisms involved, we evaluated the physiological role of the spleen in this accelerated turnover. To this end, B lymphocytes were labeled in vivo using a fluorescent marker (carboxyfluorescein diacetate succinimidyl ester), and the cell kinetic parameters (proliferation and death rates) of animals before and after splenectomy were compared. We show that the enhanced cell death observed in BLV-infected sheep is abrogated after splenectomy, revealing a key role of the spleen in B-lymphocyte dynamics.  相似文献   
76.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a central role in whole body metabolism by regulating adipocyte differentiation and energy storage. Recently, however, PPAR-gamma has also been demonstrated to affect proliferation, differentiation, and apoptosis of different cell types. As we have previously shown that BAY 11-7085-induced synovial fibroblast apoptosis is prevented by PPAR-gamma agonist 15d-PGJ2; the expression of PPAR-gamma in these cells was studied. Both PPAR-gamma1 and PPAR-gamma2 isoforms were cloned from synovial fibroblast RNA, but only PPAR-gamma1 was detected by Western blot, showing constitutive nuclear expression. Within minutes of BAY 11-7085 treatment, a PPAR-gamma1-specific band was shifted into a form of higher mobility, suggesting dephosphorylation, as confirmed by phosphatase treatment of cell extracts. Of interest, BAY 11-7085-induced PPAR-gamma1 dephosphorylation was followed by PARP and caspase-8 cleavage as well as by PPAR-gamma1 protein degradation. PPAR-gamma1 dephosphorylation was followed by the loss of PPAR-DNA binding activity ubiquitously present in synovial fibroblast nuclear extracts. Unlike the phosphorylated form, dephosphorylated PPAR-gamma1 was found in insoluble membrane cell fraction and was not ubiquitinated before degradation. PPAR-gamma1 dephosphorylation coincided with ERK1/2 phosphorylation that accompanies BAY 11-7085-induced synovial fibroblasts apoptosis. 15d-PGJ2, PGD2, and partially UO126, down-regulated ERK1/2 phosphorylation, protected cells from BAY 11-7085-induced apoptosis, and reversed both PPAR-gamma dephosphorylation and degradation. Furthermore, PPAR-gamma antagonist BADGE induced PPAR-gamma1 degradation, ERK1/2 phosphorylation, and synovial fibroblasts apoptosis. The results presented suggest an anti-apoptotic role for PPAR-gamma1 in synovial fibroblasts. Since apoptotic marker PARP is cleaved after PPAR-gamma1 dephosphorylation but before PPAR-gamma1 degradation, dephosphorylation event might be enough to mediate BAY 11-7085-induced apoptosis in synovial fibroblasts.  相似文献   
77.
Human endostatin, a potent anti-angiogenic protein, is generated by release of the C terminus of collagen XVIII. Here, we propose that cysteine cathepsins are involved in both the liberation and activation of bioactive endostatin fragments, thus regulating their anti-angiogenic properties. Cathepsins B, S, and L efficiently cleaved in vitro FRET peptides that encompass the hinge region corresponding to the N terminus of endostatin. However, in human umbilical vein endothelial cell-based assays, silencing of cathepsins S and L, but not cathepsin B, impaired the generation of the ~22-kDa endostatin species. Moreover, cathepsins L and S released two peptides from endostatin with increased angiostatic properties and both encompassing the NGR sequence, a vasculature homing motif. The G10T peptide (residues 1455-1464: collagen XVIII numbering) displayed compelling anti-proliferative (EC(50) = 0.23 nm) and proapoptotic properties. G10T inhibited aminopeptidase N (APN/CD13) and reduced tube formation of endothelial cells in a manner similar to bestatin. Combination of G10T with bestatin resulted in no further increase in anti-angiogenic activity. Taken together, these data suggest that endostatin-derived peptides may represent novel molecular links between cathepsins and APN/CD13 in the regulation of angiogenesis.  相似文献   
78.
Insertions or deletions (indels) of amino acids residues have been recognized as an important source of genetic and structural divergence between paralogous Bcl-2 family members. However, these signature sequences have not so far been extensively investigated amongst orthologous Bcl-2 family proteins. Bcl2l10 is an antiapoptotic member of the Bcl-2 family that has evolved rapidly throughout the vertebrate lineage and which shows conserved abundant expression in eggs and oocytes. In this paper, we have unraveled two major sites of divergence between human Bcl2l10 and its vertebrate homologs. The first one provides length variation at the N-terminus (before the BH4 domain) and the second one is located between the predicted α5-α6 pore-forming helices, providing an unprecedented case in the superfamily of helix-bundled pore-forming proteins. These two particular indels were studied phylogenetically and through biochemical and cell biological techniques, including truncation and site-directed mutagenesis. While deletion of the N-terminal extension had no significant functional impact in HeLa cells, our results suggest that the human Bcl2l10 protein evolved a calcium-binding motif in its α5-α6 interhelical region by acquiring critical negatively charged residues. Considering the reliance of female eggs on calcium-dependent proteins and calcium-regulated processes and the exceptional longevity of oocytes in the primate lineage, we propose that this microstructural variation may be an adaptive feature associated with high maternal expression of this Bcl-2 family member.  相似文献   
79.
80.

Background

Antiretroviral therapy (ART) has evolved rapidly since its beginnings. This analysis describes trends in first-line ART use in Asia and their impact on treatment outcomes.

Methods

Patients in the TREAT Asia HIV Observational Database receiving first-line ART for ≥6 months were included. Predictors of treatment failure and treatment modification were assessed.

Results

Data from 4662 eligible patients was analysed. Patients started ART in 2003–2006 (n = 1419), 2007–2010 (n = 2690) and 2011–2013 (n = 553). During the observation period, tenofovir, zidovudine and abacavir use largely replaced stavudine. Stavudine was prescribed to 5.8% of ART starters in 2012/13. Efavirenz use increased at the expense of nevirapine, although both continue to be used extensively (47.5% and 34.5% of patients in 2012/13, respectively). Protease inhibitor use dropped after 2004. The rate of treatment failure or modification declined over time (22.1 [95%CI 20.7–23.5] events per 100 patient/years in 2003–2006, 15.8 [14.9–16.8] in 2007–2010, and 11.6 [9.4–14.2] in 2011–2013). Adjustment for ART regimen had little impact on the temporal decline in treatment failure rates but substantially attenuated the temporal decline in rates of modification due to adverse event. In the final multivariate model, treatment modification due to adverse event was significantly predicted by earlier period of ART initiation (hazard ratio 0.52 [95%CI 0.33–0.81], p = 0.004 for 2011–2013 versus 2003–2006), older age (1.56 [1.19–2.04], p = 0.001 for ≥50 years versus <30years), female sex (1.29 [1.11–1.50], p = 0.001 versus male), positive hepatitis C status (1.33 [1.06–1.66], p = 0.013 versus negative), and ART regimen (11.36 [6.28–20.54], p<0.001 for stavudine-based regimens versus tenofovir-based).

Conclusions

The observed trends in first-line ART use in Asia reflect changes in drug availability, global treatment recommendations and prescriber preferences over the past decade. These changes have contributed to a declining rate of treatment modification due to adverse event, but not to reductions in treatment failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号