首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   40篇
  2021年   5篇
  2020年   2篇
  2019年   6篇
  2018年   9篇
  2017年   8篇
  2016年   15篇
  2015年   18篇
  2014年   18篇
  2013年   25篇
  2012年   23篇
  2011年   35篇
  2010年   13篇
  2009年   19篇
  2008年   17篇
  2007年   37篇
  2006年   18篇
  2005年   17篇
  2004年   18篇
  2003年   11篇
  2002年   10篇
  2001年   14篇
  2000年   7篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1979年   3篇
  1978年   4篇
  1976年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   2篇
  1969年   7篇
  1968年   4篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
  1963年   2篇
排序方式: 共有444条查询结果,搜索用时 15 毫秒
51.
The core entry machinery of mammalian herpesviruses comprises glycoprotein B (gB), gH, and gL. gH and gL form a heterodimer with a central role in viral membrane fusion. When archetypal alpha- or betaherpesviruses lack gL, gH misfolds and progeny virions are noninfectious. However, the gL of the rhadinovirus murid herpesvirus 4 (MuHV-4) is nonessential for infection. In order to define more generally what role gL plays in rhadinovirus infections, we disrupted its coding sequence in bovine herpesvirus 4 (BoHV-4). BoHV-4 lacking gL showed altered gH glycosylation and incorporated somewhat less gH into virions but remained infectious. However, gL(-) virions showed poor growth associated with an entry deficit. Moreover, a major part of their entry defect appeared to reflect impaired endocytosis, which occurs upstream of membrane fusion itself. Thus, the rhadinovirus gL may be more important for driving virion endocytosis than for incorporating gH into virions, and it is nonessential for membrane fusion.  相似文献   
52.
The extracellular matrix (ECM) has long been viewed primarily as an organized network of solid-phase ligands for integrin receptors. During degenerative processes, such as osteoarthritis, the ECM undergoes deterioration, resulting in its remodeling and in the release of some of its components. Matrilin-3 (MATN3) is an almost cartilage specific, pericellular protein acting in the assembly of the ECM of chondrocytes. In the past, MATN3 was found required for cartilage homeostasis, but also involved in osteoarthritis-related pro-catabolic functions. Here, to better understand the pathological and physiological functions of MATN3, its concentration as a circulating protein in articular fluids of human osteoarthritic patients was determined and its functions as a recombinant protein produced in human cells were investigated with particular emphasis on the physical state under which it is presented to chondrocytes. MATN3 down-regulated cartilage extracellular matrix (ECM) synthesis and up-regulated catabolism when administered as a soluble protein. When artificially immobilized, however, MATN3 induced chondrocyte adhesion via a α5β1 integrin-dependent mechanism, AKT activation and favored survival and ECM synthesis. Furthermore, MATN3 bound directly to isolated α5β1 integrin in vitro. TGFβ1 stimulation of chondrocytes allowed integration of exogenous MATN3 into their ECM and ECM-integrated MATN3 induced AKT phosphorylation and improved ECM synthesis and accumulation. In conclusion, the integration of MATN3 to the pericellular matrix of chondrocytes critically determines the direction toward which MATN3 regulates cartilage metabolism. These data explain how MATN3 plays either beneficial or detrimental functions in cartilage and highlight the important role played by the physical state of ECM molecules.  相似文献   
53.
Retention time prediction of peptides in liquid chromatography has proven to be a valuable tool for mass spectrometry-based proteomics, especially in designing more efficient procedures for state-of-the-art targeted workflows. Additionally, accurate retention time predictions can also be used to increase confidence in identifications in shotgun experiments. Despite these obvious benefits, the use of such methods has so far not been extended to (posttranslationally) modified peptides due to the absence of efficient predictors for such peptides. We here therefore describe a new retention time predictor for modified peptides, built on the foundations of our existing Elude algorithm. We evaluated our software by applying it on five types of commonly encountered modifications. Our results show that Elude now yields equally good prediction performances for modified and unmodified peptides, with correlation coefficients between predicted and observed retention times ranging from 0.93 to 0.98 for all the investigated datasets. Furthermore, we show that our predictor handles peptides carrying multiple modifications as well. This latest version of Elude is fully portable to new chromatographic conditions and can readily be applied to other types of posttranslational modifications. Elude is available under the permissive Apache2 open source License at http://per-colator.com or can be run via a web-interface at http://elude.sbc.su.se.  相似文献   
54.
We examined morphology, elemental composition (C, N, P), and orthophosphate-uptake efficiency in the marine heterotrophic bacterium Vibrio splendidus grown in continuous cultures. Eight chemostats were arranged along a gradient of increasing glucose concentrations in the reservoirs, shifting the limiting factor from glucose to phosphate. The content of carbon, nitrogen, and phosphorus was measured in individual cells by x-ray microanalysis using a transmission electron microscope (TEM). Cell volumes (V) were estimated from length and width measurements of unfixed, air-dried cells in TEM. There was a transition from coccoid cells in C-limited cultures toward rod-shaped cells in P-limited cultures. Cells in P-limited cultures with free glucose in the media were significantly larger than cells in glucose-depleted cultures (P < 0.0001). We found functional allometry between cellular C-, N-, and P content (in femtograms) and V (in cubic micrometers) in V. splendidus (C = 224 × V 0.89, N = 52.5 × V 0.80, P = 2 × V 0.65); i.e., larger bacteria had less elemental C, N, and P per V than smaller cells, and also less P relative to C. Biomass-specific affinity for orthophosphate uptake in large P-limited V. splendidus approached theoretical maxima predicted for uptake limited by molecular diffusion toward the cells. Comparing these theoretical values to respective values for the smaller, coccoid, C-limited V. splendidus indicated, contrary to the traditional view, that large size did not represent a trade-off when competing for the non-C-limiting nutrients.  相似文献   
55.
Both chondrocytes and mensenchymal stem cells (MSCs) are the most used cell sources for cartilage tissue engineering. However, monolayer expansion to obtain sufficient cells leads to a rapid chondrocyte dedifferentiation and a subsequent ancillary reduced ability of MSCs to differentiate into chondrocytes, thus limiting their application in cartilage repair. The aim of this study was to investigate the influence of the monolayer expansion on the immunophenotype and the gene expression profile of both cell types, and to find the appropriate compromise between monolayer expansion and the remaining chondrogenic characteristics. To this end, human chondrocytes, isolated enzymatically from femoral head slice, and human MSCs, derived from bone marrow, were maintained in monolayer culture up to passage 5. The respective expressions of cell surface markers (CD34, CD45, CD73, CD90, CD105, CD166) and several chondrogenic-related genes for each passage (P0-P5) of those cells were then analyzed using flow cytometry and quantitative real-time PCR, respectively. Flow cytometry analyses showed that, during the monolayer expansion, some qualitative and quantitative regulations occur for the expression of cell surface markers. A rapid increase in mRNA expression of type 1 collagen occurs whereas a significant decrease of type 2 collagen and Sox 9 was observed in chondrocytes through the successive passages. On the other hand, the expansion did not induced obvious change in MSCs gene expression. In conclusion, our results suggest that passage 1 might be the up-limit for chondrocytes in order to achieve their subsequent redifferentiation in 3D scaffold. Nevertheless, MSCs could be expanded in monolayer until passage 5 without loosing their undifferentiated phenotypes.  相似文献   
56.
Two mutants of Chlamydomonas reinhardtii, mf1 and mf2, characterized by a marked reduction in their phosphatidylglycerol content together with a complete loss in its Delta3-trans hexadecenoic acid-containing form, also lost photosystem II (PSII) activity. Genetic analysis of crosses between mf2 and wild-type strains shows a strict cosegregation of the PSII and lipid deficiencies, while phenotypic analysis of phototrophic revertant strains suggests that one single nuclear mutation is responsible for the pleiotropic phenotype of the mutants. The nearly complete absence of PSII core is due to a severely decreased synthesis of two subunits, D1 and apoCP47, which is not due to a decrease in translation initiation. Trace amounts of PSII cores that were detected in the mutants did not associate with the light-harvesting chlorophyll a/b-binding protein antenna (LHCII). We discuss the possible role of phosphatidylglycerol in the coupled process of cotranslational insertion and assembly of PSII core subunits.  相似文献   
57.
58.
59.
The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk''s natural inclination - forward (FW) or backward (BW) with respect to the vertical - on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW) during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5) moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (P<0.001) for the BW group, before the heel contact. At the hip, although the BW group displays a flexor moment 2.4 times higher (P<0.001) before the swing limb''s heel-off, the FW group displays an extensor moment 3.1 times higher (P<0.01) during the swing phase. The three L5 extensor peaks after the toe-off are respectively 1.7 (P<0.001), 1.4 (P<0.001) and 1.7 (P<0.01) times higher for the FW group. The main results support the idea that the patterns described during steady-state gait are already observable during gait initiation. This study also provides reference data to further investigate stance limb kinetics in specific or pathologic populations during gait initiation. It will be of particular interest for elderly people, knowing that this population displays atypical trunk postures and present a high risk of falling during this forward stepping.  相似文献   
60.

Purpose

The aim of this article is to present the first life cycle assessment of chitosan production based on data from two real producers located in India and Europe. The goal of the life cycle assessment (LCA) was to understand the main hot spots in the two supply chains, which are substantially different in terms of raw materials and production locations.

Methods

The LCA is based on consequential modelling principles, whereby allocation is avoided by means of substitution, and market mixes include only flexible, i.e. non-constrained suppliers. The product system is cradle to gate and includes the production of raw materials, namely waste shells from snow crab and shrimp in Canada and India, respectively, the processing of these in China and India and the manufacture of chitosan in Europe and India. Primary data for chitin and chitosan production were obtained from the actual producers, whereas raw material acquisition as well as waste management activities were based on literature sources. The effects of indirect land use change (iLUC) were also included. Impact assessment was carried out at midpoint level by means of the recommended methods in the International Life Cycle Data (ILCD) handbook.

Results and discussion

In the Indian supply chain, the production of chemicals (HCl and NaOH) appears as an important hot spot. The use of shrimp shells as raw material affects the market for animal feed, resulting in a credit in many impact indicators, especially in water use. The use of protein waste as fertilizer is also an important source of greenhouse-gas and ammonia emissions. In the European supply chain, energy use is the key driver for environmental impacts, namely heat production based on coal in China and electricity production in China and Europe. The use of crab shells as raw material avoids the composting process they would be otherwise subject to, leading to a saving in composting emissions, especially ammonia. In the Indian supply chain, the effect of iLUC is relevant, whereas in the European one, it is negligible.

Conclusions

Even though we assessed two products from the same family, the results show that they have very different environmental profiles, reflecting their substantially different supply chains in terms of raw material (shrimp shells vs. crab shells), production locations (locally produced vs. a global supply chain involving three continents) and the different applications (general-purpose chitosan vs. chitosan for the medical sector).
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号