首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   6篇
  113篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   9篇
  2015年   5篇
  2014年   11篇
  2013年   9篇
  2012年   4篇
  2011年   12篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  1969年   1篇
排序方式: 共有113条查询结果,搜索用时 11 毫秒
11.
12.
13.
Objectives: The purpose of this study was to determine the relationship between autonomic nervous system dysfunction and basal metabolic rate (BMR), and the effect of spasticity on basal metabolic rate. Research Method and Procedures: Twenty men (11 paraplegic and 9 tetraplegic) with American Spinal Injury Association (ASIA)‐A and ‐B grade chronic spinal cord injury (SCI) participated in this study. Total body fat mass and lean tissue mass were measured in all participants using DXA by standard methods. Patients were allocated into 2 groups to determine the effect of autonomic nervous system dysfunction on BMR: Group I (T6 and upper‐level injuries with history of autonomic dysreflexia) and Group II (T7 and lower‐level injuries without history of autonomic dysreflexia). Measurements of BMR were determined by indirect calorimetry under standardized conditions. Results: There were 13 patients in Group I and 7 patients in Group II and the difference between these two in terms of time since injury, BMI, age, weight, lean tissue mass, BMR, and BMR/kg were not significant. Conclusion: We concluded that autonomic nervous system dysfunction does not affect BMR, and it might be ignored in considering energy needs in spinal cord injury.  相似文献   
14.
Recently, genome sequences from different fungi have become available. This information reveals that yeasts and filamentous fungi possess up to five aquaporins. Functional analyses have mainly been performed in budding yeast, Saccharomyces cerevisiae, which has two orthodox aquaporins and two aquaglyceroporins. Whereas Aqy1 is a spore-specific water channel, Aqy2 is only expressed in proliferating cells and controlled by osmotic signals. Fungal aquaglyceroporins often have long, poorly conserved terminal extensions and differ in the otherwise highly conserved NPA motifs, being NPX and NXA respectively. Three subgroups can be distinguished. Fps1-like proteins seem to be restricted to yeasts. Fps1, the osmogated glycerol export channel in S. cerevisiae, plays a central role in osmoregulation and determination of intracellular glycerol levels. Sequences important for gating have been identified within its termini. Another type of aquaglyceroporin, resembling S. cerevisiae Yfl054, has a long N-terminal extension and its physiological role is currently unknown. The third group of aquaglyceroporins, only found in filamentous fungi, have extensions of variable size. Taken together, yeasts and filamentous fungi are a fruitful resource to study the function, evolution, role and regulation of aquaporins, and the possibility to compare orthologous sequences from a large number of different organisms facilitates functional and structural studies.  相似文献   
15.
Oxidative stress is associated with various pathophysiological processes, including cell survival, adhesion, apoptosis, and cancer. In the present study, we aimed to evaluate the effects of H2O2‐induced toxicity on adipose tissue–derived stem cells (ADSCs) and whether 17β‐estradiol (E2) has protective effects on these cells. ADSCs derived from adult Sprague–Dawley rats were pretreated with different doses of E2 for 24 h and then exposed to 200 µM H2O2 for 4 h. Incubation of ADSCs with H2O2‐decreased cell viability in a concentration‐dependent fashion (p < 0.0001), whereas pretreatment of these cells with E2 significantly reversed toxicity (p < 0.05), inhibited apoptotic changes, and decreased lipid peroxidation (p < 0.0005). Our findings suggest that E2 protects ADSCs from oxidative‐induced cell death, and therefore, it may be used to improve the survival rate and regenerative capacity of stem cells. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:301–307, 2012; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21421  相似文献   
16.

Background

Preservation of fossil vertebrates in volcanic rocks is extremely rare. An articulated skull (cranium and mandible) of a rhinoceros was found in a 9.2±0.1 Ma-old ignimbrite of Cappadocia, Central Turkey. The unusual aspect of the preserved hard tissues of the skull (rough bone surface and brittle dentine) allows suspecting a peri-mortem exposure to a heating source.

Methodology/Principal Findings

Here we describe and identify the skull as belonging to the large two-horned rhinocerotine Ceratotherium neumayri, well-known in the late Miocene of the Eastern Mediterranean Province. Gross structural features and microscopic changes of hard tissues (bones and teeth) are then monitored and compared to the results of forensic and archaeological studies and experiments focusing on heating effects, in order to reconstruct the hypothetical peri-mortem conditions. Macroscopic and microscopic structural changes on compact bones (canaliculi and lamellae vanished), as well as partial dentine/cementum disintegration, drastic enamel-dentine disjunctions or microscopic cracks affecting all hard dental tissues (enamel, cementum, and dentine) point to continued exposures to temperatures around 400–450°C. Comparison to other cases of preservation of fossil vertebrates within volcanic rocks points unambiguously to some similarity with the 79 AD Plinian eruption of the Vesuvius, in Italy.

Conclusions/Significance

A 9.2±0.1 Ma-old pyroclastic density current, sourced from the Çardak caldera, likely provoked the instant death of the Karacaşar rhino, before the body of the latter experienced severe dehydration (leading to the wide and sustainable opening of the mouth), was then dismembered within the pyroclastic flow of subaerial origin, the skull being separated from the remnant body and baked under a temperature approximating 400°C, then transported northward, rolled, and trapped in disarray into that pyroclastic flow forming the pinkish Kavak-4 ignimbrite ∼30 km North from the upper Miocene vent.  相似文献   
17.
The objective of this work was to identify strain-specific characteristics from real-time measurements of circadian rhythms of two inbred mouse strains. In particular, heart rate, temperature, and activity data collected from A/J and C57BL/6J (B6) mice using telemetry are analyzed. The influence of activity on heart rate and temperature is minimized by correlation analysis followed by regression analysis. The correlation analysis is used to determine the length of the activity data filter that results in the best correlation between activity data and heart rate or temperature. After the activity data are filtered, they are used in regression analysis. The temperature and heart rate rhythms obtained as the intercepts of the regression analysis are interpreted as the zero-activity rhythms and consequently are good estimates of the circadian rhythms. The circadian temperature rhythms for the B6 mice follow a smoother cosine-like time waveform, whereas those for the A/J mice follow a more square-wave-like waveform. To quantify the difference between these two temperature rhythms, a feature based on Fourier analysis of the time-series data is used. Detrended fluctuation analysis is used to identify features in the heart rate rhythms. The results of this work show that the features for the circadian temperature and heart rate rhythms can be used as distinguishing characteristics of the A/J and B6 strains. This work provides the foundation for future studies directed at investigating the influence of chromosomal substitutions on the regulation of circadian rhythms in these two strains.  相似文献   
18.
Insights into the molecular basis for natural killer (NK) cell recognition of human cancer have been obtained in recent years. Here, we review current knowledge on the molecular specificity and function of human NK cells. Evidence for NK cell targeting of human tumors is provided and new strategies for NK cell-based immunotherapy against human cancer are discussed. Based on current knowledge, we foresee a development where more cancers may be subject to treatment with drugs or other immunomodulatory agents affecting NK cells, either directly or indirectly. We also envisage a possibility that certain forms of cancers may be subject to treatment with adoptively transferred NK cells, either alone or in combination with other therapeutic interventions.  相似文献   
19.
The arterial wall contains a significant amount of charged proteoglycans, which are inhomogeneously distributed, with the greatest concentrations in the intimal and medial layers. The hypothesis of this study is that the transmural distribution of proteoglycans plays a significant role in regulating residual stresses in the arterial wall. This hypothesis was first tested theoretically, using the framework of mixture theory for charged hydrated tissues, and then verified experimentally by measuring the opening angle of rat aorta in NaCl solutions of various ionic strengths. A three-dimensional finite element model of aortic ring, using realistic values of the solid matrix shear modulus and proteoglycan fixed-charge density, yielded opening angles and changes with osmolarity comparable to values reported in the literature. Experimentally, the mean opening angle in isotonic saline (300 mosM) was 15 +/- 17 degrees and changed to 4 +/- 19 degrees and 73 +/- 18 degrees under hypertonic (2,000 mosM) and hypotonic (0 mosM) conditions, respectively (n = 16). In addition, the opening angle in isotonic (300 mosM) sucrose, an uncharged molecule, was 60 +/- 16 degrees (n = 11), suggesting that the charge effect, not cellular swelling, was the major underlying mechanism for these observations. The extent of changes in opening angle under osmotic challenges suggests that transmural heterogeneity of fixed-charge density plays a crucial role in governing the zero-stress configuration of the aorta. A significant implication of this finding is that arterial wall remodeling in response to altered wall stresses may occur via altered deposition of proteoglycans across the wall thickness, providing a novel mechanism for regulating mechanical homeostasis in vascular tissue.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号