首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   18篇
  2022年   1篇
  2021年   2篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   11篇
  2009年   6篇
  2008年   4篇
  2007年   9篇
  2006年   5篇
  2005年   6篇
  2004年   7篇
  2003年   8篇
  2002年   2篇
  2001年   7篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有163条查询结果,搜索用时 265 毫秒
51.
The process of microtubule nucleation in plant cells is still a major question in plant cell biology. gamma-Tubulin is known as one of the key molecular players for microtubule nucleation in animal and fungal cells. Here, we provide genetic evidence that in Arabidopsis thaliana, gamma-tubulin is required for the formation of spindle, phragmoplast, and cortical microtubule arrays. We used a reverse genetics approach to investigate the role of the two Arabidopsis gamma-tubulin genes in plant development and in the formation of microtubule arrays. Isolation of mutants in each gene and analysis of two combinations of gamma-tubulin double mutants showed that the two genes have redundant functions. The first combination is lethal at the gametophytic stage. Disruption of both gamma-tubulin genes causes aberrant spindle and phragmoplast structures and alters nuclear division in gametophytes. The second combination of gamma-tubulin alleles affects late seedling development, ultimately leading to lethality 3 weeks after germination. This partially viable mutant combination enabled us to follow dynamically the effects of gamma-tubulin depletion on microtubule arrays in dividing cells using a green fluorescent protein marker. These results establish the central role of gamma-tubulin in the formation and organization of microtubule arrays in Arabidopsis.  相似文献   
52.
Cell volume changes during rapid temperature shifts   总被引:2,自引:0,他引:2  
The effect of a rapid temperature increase on the volume of different types of cells was investigated. Experiments were carried out using continuous microscopic image analysis. Volume variation of yeast cells, yeast spheroplasts and human leukaemia cells was measured during the transient phase after a thermal shift. The thermal shift was found to induce rapid increase in cell volume for cells lacking a cell wall (yeast spheroplasts and human leukaemia cells). This increase in cell volume is assumed to be a main cause of the heat shock-induced cell death. A theoretical mechanistic model that explains the behaviour of these cells is finally proposed.  相似文献   
53.
In plants, sugars are the main respiratory substrates and important signaling molecules in the regulation of carbon metabolism. Sugar signaling studies suggested that sugar sensing involves several key components, among them hexokinase (HXK). Although the sensing mechanism of HXK is unknown, several experiments support the hypothesis that hexose phosphorylation is a determining factor. Glucose (Glc) analogs transported into cells but not phosphorylated are frequently used to test this hypothesis, among them 3-O-methyl-Glc (3-OMG). The aim of the present work was to investigate the effects and fate of 3-OMG in heterotrophic plant cells. Measurements of respiration rates, protein and metabolite contents, and protease activities and amounts showed that 3-OMG is not a respiratory substrate and does not contribute to biosynthesis. Proteolysis and lipolysis are induced in 3-OMG-fed maize (Zea mays L. cv DEA) roots in the same way as in sugar-starved organs. However, contrary to the generally accepted idea, phosphorous and carbon nuclear magnetic resonance experiments and enzymatic assays prove that 3-OMG is phosphorylated to 3-OMG-6-phosphate, which accumulates in the cells. Insofar as plant HXK is involved in sugar sensing, these findings are discussed on the basis of the kinetic properties because the catalytic efficiency of HXK isolated from maize root tips is five orders of magnitude lower for 3-OMG than for Glc and Man.  相似文献   
54.
A fully automated liquid chromatographic method was developed for the determination of Ro 28-2653, a new synthetic inhibitor of matrix metalloproteinases (MMPs), in ovine serum and plasma. The method was based on the coupling of a pre-column packed with restricted access material, namely LiChrospher RP-8 ADS (alkyl diol silica), for sample clean-up to an analytical column containing octyl silica stationary phase. One hundred microl of biological sample, to which 2-propanol was automatically added, were injected onto the ADS pre-column, which was then washed with a washing liquid consisting of a mixture of 25 mM phosphate buffer (pH 7.0) and acetonitrile (90:10; v/v) for 10 min. By rotation of the switching valve, the analyte was then eluted in the back-flush mode with the LC mobile phase composed of a mixture of acetonitrile and 25 mM phosphate buffer (pH 7.0) (57:43; v/v). The UV detection was performed at 395 nm. The main parameters likely to influence the sample preparation technique were investigated. The method was then validated over a concentration range from 17.5 to 1950 ng/ml, the first concentration level corresponding to the lower limit of quantitation. At this concentration level, the mean bias and the R.S.D. value for intermediate precision were -2.4% and 4.2%, respectively.  相似文献   
55.
56.
57.
Infections with Salmonella enterica belong to the most prominent causes of food poisoning and infected fruits and vegetables represent important vectors for salmonellosis. Recent evidence indicates that plants recognize S. enterica and raise defense responses. Nonetheless, the molecular mechanisms controlling the interaction of S. enterica with plants are still largely unclear. Here, we show that flagellin from S. enterica represents a prominent pathogenassociated molecular pattern (PAMP) in Arabidopsis thaliana, which induces PAMP-triggered immunity (PTI) via the recognition of the fig22 domain by the receptor kinase FLS2. The Arabidopsis fls2 mutant shows reduced though not abolished PTI activation, indicating that plants rely also on recognition of other S. enterica PAMPs. Interestingly, the S. enterica type III secretion system (T3SS) mutant prgH- induced stronger defense gene expression than wild-type bacteria in Arabidopsis, suggesting that T3SS effectors are involved in defense suppression. Furthermore, we observe that S. enterica strains show variation in the fig22 epitope, which results in proteins with reduced PTI-inducing activity. Altogether, these results show that S. enterica activates PTI in Arabidopsis and suggest that, in order to accomplish plant colonization, S. enterica evolved strategies to avoid or suppress PTI.  相似文献   
58.
Phosphorylation of the voltage-gated Na+ (NaV) channel NaV1.5 regulates cardiac excitability, yet the phosphorylation sites regulating its function and the underlying mechanisms remain largely unknown. Using a systematic, quantitative phosphoproteomic approach, we analyzed NaV1.5 channel complexes purified from nonfailing and failing mouse left ventricles, and we identified 42 phosphorylation sites on NaV1.5. Most sites are clustered, and three of these clusters are highly phosphorylated. Analyses of phosphosilent and phosphomimetic NaV1.5 mutants revealed the roles of three phosphosites in regulating NaV1.5 channel expression and gating. The phosphorylated serines S664 and S667 regulate the voltage dependence of channel activation in a cumulative manner, whereas the nearby S671, the phosphorylation of which is increased in failing hearts, regulates cell surface NaV1.5 expression and peak Na+ current. No additional roles could be assigned to the other clusters of phosphosites. Taken together, our results demonstrate that ventricular NaV1.5 is highly phosphorylated and that the phosphorylation-dependent regulation of NaV1.5 channels is highly complex, site specific, and dynamic.  相似文献   
59.

Background  

Myotonic dystrophy type 1 (MD1) is one of the most prevalent neuromuscular diseases, yet very little is known about how MD1 affects the lives of couples and how they themselves manage individually and together. To better match health care to their problems, concerns and needs, it is important to understand their perspective of living with this hereditary, systemic disease.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号