首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   108篇
  713篇
  2021年   10篇
  2019年   5篇
  2017年   9篇
  2016年   9篇
  2015年   13篇
  2014年   23篇
  2013年   32篇
  2012年   35篇
  2011年   37篇
  2010年   29篇
  2009年   13篇
  2008年   22篇
  2007年   21篇
  2006年   21篇
  2005年   22篇
  2004年   28篇
  2003年   15篇
  2002年   23篇
  2001年   9篇
  2000年   13篇
  1999年   15篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1994年   7篇
  1993年   8篇
  1992年   11篇
  1991年   10篇
  1990年   10篇
  1989年   9篇
  1988年   6篇
  1987年   9篇
  1986年   9篇
  1985年   6篇
  1984年   13篇
  1983年   7篇
  1982年   10篇
  1981年   11篇
  1980年   7篇
  1977年   5篇
  1976年   10篇
  1974年   10篇
  1973年   9篇
  1972年   8篇
  1970年   12篇
  1969年   8篇
  1968年   9篇
  1967年   5篇
  1956年   4篇
  1942年   4篇
排序方式: 共有713条查询结果,搜索用时 15 毫秒
61.
In vivo DNA damage in gastric epithelial cells   总被引:6,自引:0,他引:6  
A number of risk factors have been linked epidemiologically with gastric cancer, but studies of DNA damage in gastric epithelial cells are limited. The comet assay is a simple technique for determining levels of DNA damage in individual cells. In this study, we have validated the comet assay for use in epithelial cells derived directly from human gastric biopsies, determined optimal conditions for biopsy digestion and investigated the effects of oxidative stress and digestion time on DNA damage. Biopsies taken at endoscopy were digested using combinations of pronase and collagenase, ethylenediaminetetra-acetic acid (EDTA) and vigorous shaking. The resultant cell suspension was assessed for cell concentration and epithelial cell and leukocyte content. A score for DNA damage, the comet %, was derived from the cell suspension, and the effect of various digestion conditions was studied. Cells were incubated with H(2)O(2) and DNA damage was assessed. Pronase and collagenase provided optimum digestion conditions, releasing 1. 12x10(5) cells per biopsy, predominantly epithelial. Of the 23 suspensions examined, all but three had leukocyte concentrations of less than 20%. The comet assay had high inter-observer (6.1%) and inter-assay (4.5%) reproducibility. Overnight storage of the biopsy at 4 degrees C had no significant effect on DNA migration. Comet % increased from a median of 46% in untreated cells to 88% in cells incubated for 45 min in H(2)O(2) (p=0.005). Serial 25-min digestions were performed on biopsies from 13 patients to release cells from successively deeper levels in the crypt. Levels of DNA migration were significantly lower with each digestion (r=-0.94, p<0.001), suggesting that DNA damage is lower in younger cells released from low in the gastric crypt. The comet assay is a reproducible measure of DNA damage in gastric epithelial cells. Damage accumulates in older, more superficial cells, and can be induced by oxidative stress.  相似文献   
62.
An optical encoder is a device that uses an interrupted light source-sensor pair to map linear or rotational motion onto a periodic signal. Simple, inexpensive optical encoders are used for precise positioning in machines such as desktop printers, disk drives, and astronomical telescopes. A strand of DNA labeled with a series of Fo?rster resonance energy transfer acceptor dyes can perform the same function at the nanometer scale, producing a periodic fluorescence signal that encodes the movement of a single donor-labeled molecular motor with high spatial and temporal resolution. Previous measurements of this type have employed encoders limited to five acceptor dyes, and hence five signal periods, restricting the range of motion that could be followed. Here we describe two methods for synthesizing double-stranded DNA containing several to hundreds of regularly spaced dyes on one strand. Distinct functional groups incorporated at the encoder ends enable tethering for single-molecule measurements.  相似文献   
63.
We introduce a near-real-time optical imaging method that works via the detection of the intrinsic fluorescence of life forms upon excitation by deep-UV (DUV) illumination. A DUV (<250-nm) source enables the detection of microbes in their native state on natural materials, avoiding background autofluorescence and without the need for fluorescent dyes or tags. We demonstrate that DUV-laser-induced native fluorescence can detect bacteria on opaque surfaces at spatial scales ranging from tens of centimeters to micrometers and from communities to single cells. Given exposure times of 100 μs and low excitation intensities, this technique enables rapid imaging of bacterial communities and cells without irreversible sample alteration or destruction. We also demonstrate the first noninvasive detection of bacteria on in situ-incubated environmental experimental samples from the deep ocean (Lo''ihi Seamount), showing the use of DUV native fluorescence for in situ detection in the deep biosphere and other nutrient-limited environments.Bacteria are widely recognized for living in extreme environments and as integral players in processes as varied as weathering, corrosion, environmental remediation, pathogenesis, and symbiosis (3, 4, 26). In most of these cases, surface-bound bacteria play key roles (1, 7, 19) and pose a particular challenge for researchers: the detection and imaging of life on reflective and/or fluorescent surfaces at the microbial (μm) scale (5, 12, 18). In environments ranging from the deep subsurface biosphere, dry deserts, and deep ice cores to hospitals and clean rooms, concentrations of bacteria, either as spores or active cells, can range from 109 to less than 1,000 cells/gram (14, 22, 24, 25, 29, 34). Finding and quantifying these microbes when they are on surfaces usually involves epifluorescence techniques, using dyes that bind to DNA or proteins, and examining the fluorescence of those dyes under UV or visible illumination (6, 8, 9, 16, 23, 31).Current tagging methods offer a number of significant disadvantages. First, the mineral surfaces on which the microbes are found are often themselves highly fluorescent, making the microbes difficult or impossible to differentiate; second, the act of adding the fluorescent probe can alter the physical and chemical nature of the system; additionally, nonspecific binding can lead to overestimation of cell abundance (2, 18). Because of the problems associated with the fluorescence of minerals and staining to detect microbial cells, researchers typically resort to physically removing cells from surfaces and staining/counting them separately from their matrix (12). This is an inefficient process that involves both cell loss and the loss of information about the mineralogical context that may have an influence on the microbial ecology. More recently, cell staining of active cells with SYBR green 1 and a computer-assisted analysis method has demonstrated an ability to separate fluorescent cells from nonspecific binding (17). However, a label-free method to search for and quantify the distribution and abundance of bacteria on natural samples over multiple spatial scales has not been available.Label-free optical approaches using Raman scattering methods have been offered as a nondestructive imaging solution (13, 27). However, these systems utilize laser energies greater than 1 × 109 joules/cm2, exceeding the energies necessary for chemical damage to the cell (33), require relatively flat surfaces for optimal collection efficiency, and can suffer from background fluorescence of the target and the substrate it may reside on.In response to these challenges, we have developed an optical method that enables detection and imaging of single bacterial cells on natural and opaque surfaces and assessment of bacterial density and distribution of single cells to biofilms over spatial scales ranging from microns to centimeters. The method utilizes deep-UV (DUV) (<250-nm)-laser-induced native fluorescence of organic components intrinsic to the cell or spore while avoiding autofluorescence interference from the substrate. Here we show DUV native fluorescence as a near-real-time optical imaging method and demonstrate the first noninvasive detection of bacteria on in situ-incubated environmental experimental samples from the deep ocean (Lo''ihi Seamount) for which we correlate the bacterial biomass to distributions of the iron-oxide precipitates.  相似文献   
64.
Stone EM  Chantranupong L  Georgiou G 《Biochemistry》2010,49(49):10582-10588
The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution.  相似文献   
65.
66.
Nitrogen removal from wastewater by algae provides the potential benefit of producing lipids for biodiesel and biomass for anaerobic digestion. Further, ammonium is the renewable form of nitrogen produced during anaerobic digestion and one of the main nitrogen sources associated with wastewater. The wastewater isolates Scenedesmus sp. 131 and Monoraphidium sp. 92 were grown with ammonium, nitrate, or urea in the presence of 5 % CO2, and ammonium and nitrate in the presence of air to optimize the growth and biofuel production of these chlorophytes. Results showed that growth on ammonium, in both 5 % CO2 and air, caused a significant decrease in pH during the exponential phase causing growth inhibition due to the low buffering capacity of the medium. Therefore, biological buffers and pH controllers were utilized to prevent a decrease in pH. Growth on ammonium with pH control (synthetic buffers or KOH dosing) demonstrated that growth (rate and yield), biodiesel production, and ammonium utilization, similar to nitrate- and urea-amended treatments, can be achieved if sufficient CO2 is available. Since the use of buffers is economically limited to laboratory-scale experiments, chemical pH control could bridge the gap encountered in the scale-up to industrial processes.  相似文献   
67.
1. Within a lake district of relatively homogeneous geomorphology, the responses of lakes to climate are influenced by the complexity of the hydrogeologic setting, position in the landscape, and lake‐specific biological and physical features. We examined lake chemical responses to drought in surface water‐ and groundwater‐dominated districts to address two general questions. (1) Are spatial patterns in chemical dynamics among lakes uniform and synchronous within a lake district, suggesting broad geomorphic controls; variable in a spatially explicit pattern, with synchrony related to landscape position, suggesting hydrologic flowpath controls; or spatially unstructured and asynchronous, suggesting overriding control by lake‐specific factors? (2) Are lake responses to drought a simple function of precipitation quantity or are they dictated by more complex interactions among climate, unique lake features, and hydrologic setting? 2. Annual open‐water means for epilimnetic concentrations of chloride, calcium, sulfate, ANC, DOC, total nitrogen, silica, total phosphorus, and chlorophyll a measured between 1982 and 1995 were assembled for lakes in the Red Lake and ELA districts of north‐western Ontario, the Muskoka – Dorset district in south‐central Ontario, and the Northern Highland district of Wisconsin. Within each district, we compared responses of lakes classified by landscape position into highland or lowland, depending on relative location within the local to regional hydrologic flow system. Synchrony, defined as a measure of the similarity in inter‐annual dynamics among lakes within a district, was quantified as the Pearson product‐moment correlation (r) between two lakes with observations paired by year. To determine if solute concentrations were directly related to interannual variations in precipitation quantity, we used regression analysis to fit district‐wide slopes describing the relationship between each chemical variable and annual (June to May) and October to May (Oct–May) precipitation. 3. Among lakes in each of the three Ontario districts, the pattern of chemical response to interannual shifts in precipitation was spatially uniform. In these surface water‐ dominated districts, solute concentrations were generally a simple function of precipitation. Conservative solutes, like calcium and chloride, tended to be more synchronous and were negatively related to precipitation. Solutes such as silica, total phosphorus, and chlorophyll a, which are influenced by in‐lake processes, were less synchronous and relationships with precipitation tended to be positive or absent. 4. In the groundwater‐dominated Northern Highland lakes of Wisconsin, we observed spatial structure in drought response, with lowland lakes more synchronous than highland lakes. However, there was no evidence for a direct relationship between any solute and precipitation. Instead, increases in the concentration of the conservative ion calcium during drought were not followed by a symmetrical return to pre‐drought conditions when precipitation returned to normal or above‐average values. 5. For calcium, time lags in recovery from drought appeared related to hydrologic features in a complex way. In the highland Crystal Lake, calcium concentrations tracked lake stage inversely, with a return to pre‐drought concentrations and lake stage five years after the drought. This pattern suggests strong evaporative controls. In contrast, after five years of normal precipitation, calcium in the lowland Sparkling Lake had not returned to pre‐drought conditions despite a rebound in lake stage. This result suggests that calcium concentrations in lowland lakes were controlled more by regional groundwater flowpaths, which track climatic signals more slowly. 6. Temporal dynamics driven by climate were most similar among lakes in districts that have a relatively simple hydrology, such as ELA. Where hydrologic setting was more complex, as in the groundwater‐dominated Northern Highland of Wisconsin, the expression of climate signals in lakes showed lags and spatial patterns related to landscape position. In general, we expect that landscape and lake‐specific factors become increasingly important in lake districts with more heterogeneous hydrogeology, topography or land use. These strong chemical responses to climate need to be considered when interpreting the responses of lakes to other regional disturbances.  相似文献   
68.
69.
iNKT cells are required for the induction of airway hyperreactivity (AHR), a cardinal feature of asthma, but how iNKT cells traffic to the lungs to induce AHR has not been previously studied. Using several models of asthma, we demonstrated that iNKT cells required the chemokine receptor CCR4 for pulmonary localization and for the induction of AHR. In both allergen-induced and glycolipid-induced models of AHR, wild-type but not CCR4-/- mice developed AHR. Furthermore, adoptive transfer of wild-type but not CCR4-/- iNKT cells reconstituted AHR in iNKT cell-deficient mice. Moreover, we specifically tracked CCR4-/- vs wild-type iNKT cells in CCR4-/-:wild-type mixed BM chimeric mice in the resting state, and when AHR was induced by protein allergen or glycolipid. Using this unique model, we showed that both iNKT cells and conventional T cells required CCR4 for competitive localization into the bronchoalveolar lavage/airways compartment. These results establish for the first time that the pulmonary localization of iNKT cells critical for the induction of AHR requires CCR4 expression by iNKT cells.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号