首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3942篇
  免费   411篇
  国内免费   1篇
  2021年   53篇
  2019年   42篇
  2018年   39篇
  2017年   47篇
  2016年   72篇
  2015年   131篇
  2014年   160篇
  2013年   204篇
  2012年   240篇
  2011年   230篇
  2010年   151篇
  2009年   120篇
  2008年   195篇
  2007年   193篇
  2006年   186篇
  2005年   183篇
  2004年   164篇
  2003年   151篇
  2002年   149篇
  2001年   92篇
  2000年   97篇
  1999年   89篇
  1998年   63篇
  1997年   42篇
  1996年   49篇
  1995年   26篇
  1994年   34篇
  1993年   30篇
  1992年   57篇
  1991年   47篇
  1990年   43篇
  1989年   50篇
  1988年   58篇
  1987年   47篇
  1986年   49篇
  1985年   63篇
  1984年   36篇
  1983年   25篇
  1982年   36篇
  1981年   29篇
  1980年   27篇
  1979年   43篇
  1978年   33篇
  1977年   46篇
  1976年   31篇
  1975年   23篇
  1974年   37篇
  1973年   38篇
  1972年   33篇
  1970年   27篇
排序方式: 共有4354条查询结果,搜索用时 171 毫秒
51.
52.
53.
Summary Cross-reactions between human plasma proteins and their homologues in primate blood were investigated systematically. From the three groups of proteins distinguished earlier [2] two have been especially examined; these findings are reported and discussed in the present communication. The Immunological Evolution Group (IEG) I, comprising IgA (-chain), IgD (-chain) and inter--trypsininhibitor, cross-reacts with pongid plasma only, IEG IIa, i.e. IgM (-chain), 2-glycoproteins II and III and cholinesterase, does so with the pongid and cercopithecoid plasmas tested; IEG IIb, including acid l-glycoprotein, 2HS-glycoprotein, l-trypsininhibitor, haptoglobin and hemopexin, cross-reacts with pongid, cercopithecoid and cebus (platyrrhinian) plasma and finally IEG IIc, consisting of transferrin and Gc-globulin, does so with all primate plasmas tested, including prosimians. All the proteins named do not cross-react however with non-primate proteins as do those of IEG III. It is concluded, that the determinants reacting in the primate proteins increase in their evolutionary ages from IEG I over IEG IIa, IIb to IIc in the same way as the last common ancestors of man and the crossreacting species increase.
Zusammenfassung Die Kreuzreaktionen zwischen menschlichen Plasmaeiweißen und ihren Homologen im Blut von subhumanen Primaten wurden systematisch untersucht. Von den drei früher voneinander abgetrennten Gruppen [2] wurden zwei für die vorliegende Versuchsreihe herausgegriffen; eine von ihnen konnte weiter unterteilt werden. Die erhobenen Befunde werden berichtet und diskutiert. Die Immunologische Evolutions-Gruppe (IEG) I, die IgA (-Kette), IgD (-Kette) und den Inter--Trypsininhibitor umfaßt, zeight Kreuzreaktionen nur mit den Plasmen von Pongiden. Die IEG IIa, zu der IgM (-Kette), die 2 II und III und Cholinesterase gehören, kreuzreagiert mit den entsprechenden Plasmaproteinen der geprüften Pongiden und Cercopithecoidea, die IEG IIb—das sind saueres l-Glycoprotein, 2HS-Glycoprotein, l-Trypsininhibitor, Haptoglobin und Haemopexin — mit Pongiden, Cercopithecoidea und Cebus (Platyrrhini) und endlich die IEG IIc, die sich aus Transferrin und dem Gc-Globulin zusammensetzt, mit allen geprüften Primatenplasmen einschließlich denen von Prosimiern. Alle hier genannten Plasmaeiweiße zeigen jedoch keine Kreuzreaktionen mit Proteinen von Nichtprimaten, wie dies bei der IEG III der Fall ist.Aus den vorliegenden Befunden wird der Schluß gezogen, daß die Determinanten der Primatenproteine, die jeweils reagieren, in ihrem phylogenetischen Alter von IEG Iüber IEG IIa, IIb, IIc im gleichen Maße ansteigen, wie die letzten gemeinsamen Vorfahren von Mensch und den kreuzreagierenden Arten.


(Chief: Prof. Dr. E. Krah)  相似文献   
54.
Résumé Le squelette vertébral de l'Anguille est formé d'os cellulaire: lamellaire compact ou spongieux, suivant les différentes parties de la vertèbre. Nous avons pu y mettre en évidence, chez des animaux physiologiquement normaux, les trois catégories de cellules caractéristiques de l'os des vertébrés supérieurs: ostéoblastes, osteocytes, ostéoclastes. Elles ont les mêmes fonctions que chez ces derniers, les ostéoblastes procèdent à l'élaboration du tissu osseux, alors que les ostéoclastes le détruisent; à cette résorption ostéoclastique s'ajoute une lyse périostéocytaire ou résorption périlacunaire. Les osteocytes, dans ce tissu, nous paraissent être des éléments actifs; néanmoins, leur nombre (par unité de surface) est très inférieur à celui trouvé chez les Mammifères. Le remaniement osseux résultant du jeu de l'apposition et de la résorption est important et comparable à celui existant chez l'Homme.L'os de l'Anguille est, à de nombreux points de vue, très voisin de celui des Mammifères; les Poissons n'ont pas de parathyroïdes en tant que telles mais ils sont pourvus d'autres glandes vraisemblablement impliquées dans la régulation phosphocalcique: corps ultimobranchial et corpuscules de Stannius. Notre but sera donc d'essayer de déterminer comment est réglé le métabolisme de l'os cellulaire des Téléostéens.
Histologic study on teleost cellular bone I.
Summary The vertebral skeleton of the eel consists of cellular bone, either lamellar or spongy, depending on different parts of the vertebra. In this osseous tissue we have found, in physiologically normal animals, three categories of caracteristic cells of the bone of higher vertebrates: osteoblasts, osteocytes, osteoclasts. They have the same functions as in higher vertebrates, osteoblasts form the bone while the osteoclasts which are to be found in Howship's lacunae destroy it. In addition, a perilacunar type of bone resorption or osteocytic osteolysis can be observed. In this bone, osteocytes seem to be active cells, but the concentration of osteocytes is decidedly lower than that to be found in Mammals.The osseous remodeling produced by apposition and resorption is of the same importance as in human bone. The bone of the eel, in many ways, closely resembles that of mammals. Teleost fish do not have parathyroid glands, but their phosphocalcic regulation seems to be facilitated by the action of two endocrine glands: Ultimobranchial body and the corpuscles of Stannius.The regulation of the cellular bone metabolism of Teleostean fishes is discussed.
Nous remercions Monsieur le Professeur Baud qui nous accueille dans son laboratoire à Genève et qui nous prodigue ses conseils.  相似文献   
55.
56.
Zusammenfassung Die Kinetik der Ionenaufnahme durch junge und alte Sprosse von Mnium cuspidatum wurde untersucht. Die verschieden alten Sprosse unterscheiden sich vor allem durch das Vorhandensein einer aktiven Gipfelknospe bei den jungen Gametophyten, die bei den alten offenbar ihre Tätigkeit eingestellt hat. Im niedrigen Konzentrationsbereich (0–0,5 mM) haben jungen und alte Sprosse hyperbolische Isothermen der Ionenaufnahme, die sich etwas hinsichtlich der apparenten Michaeliskonstanten und der Maximalgeschwindigkeit unterscheiden. Im hohen Konzentrationsbereich (1–10 mM) ist der Unterschied qualitativ. Mit jungen Sprossen erhält man eine lineare oder exponentielle Isotherme, mit alten Sprossen eine hyperbolische Kurve. Der vermutete Einfluß der Gipfelknospe kann mit Effekten von Wuchsstoffen auf den Stofftransport zusammenhängen und läßt einen Einfluß dieser Regulationssysteme auf die Membranfunktion vermuten.
The kinetics of ion uptake by young and old branches of mnium cuspidatum
Summary Isotherms of K(Rb)-, Cl- and SO4-uptake by young and old branches of the moss Mnium cuspidatum were investigated. Old moss gametophytes from the 1966 vegetation period were collected in the forests surrounding Darmstadt from February to mid-April 1967 and from the 1967 season in late September 1967. Young plants were sampled from mid-April to the end of May 1967 and they were also grown by water culture of old plants.Both young and old branches have hyperbolic isotherms of ion uptake in the low concentration range (0–0.5 mM) (Fig. 1–3), which slightly differ in K mand V max (Table). Isotherms in the high range (1–10 mM), however, are drastically different, changing from linear or exponential with young moss branches to hyperbolic with old gametophytes (Figs. 1–3).The linear or exponential high-range isotherm obtained with young moss plants is compared with other examples reported in the literature (Fig. 4). As the leaflets of the moss plants, which constitute 2/3 of the fresh weight of the material used in the experiments, have well developed vacuoles, the correlation between hyperbolic isotherms and vacuolation does not apply here (Fig. 4a, Torii and Laties, 1966).The change in shape of the high-range moss isotherm with age resembles the change from exponential to hyperbolic kinetics in isolated potato discs during washing (Fig. 4b, Laties, Macdonald and Dainty, 1964). The events triggered by isolation of potato discs from the interior of the tuber may be similar to the changes in the moss material under the control of the terminal bud, which is only active in the young branches.The suggested influence of the active terminal bud of young moss plants on the ion absorption process of cells in the tissue may be related to effects of growth substances on translocation reported in the literature and may point to a direct effect of these regulatory systems on membrane function.In this respect the comparison of corn root stele and cortex is of interest. Isolated steles, both freshly isolated and after washing, have exponential isotherms in the high range (Fig. 4c), whereas cortex displays a hyperbolic isotherm which changes little with ageing (Lüttge and Laties, 1967). In contrast to the case in potato and moss materials, this phenomenon is not simply due to ageing but involves morphogenetic differences.Temperature is another factor which influences the shape of the high range isotherm. All examples discussed so far refer to experiments at room temperature. At low temperatures high-range isotherms for proximal root tissue or aged potato discs have an exponential shape (Torii and Laties, 1966; Laties, Macdonald and Dainty, 1964). It thus appears that the exponential isotherm of young moss branches indicates that as in freshly isolated potato discs or in corn root stele the metabolic high-range uptake system is not developed.
  相似文献   
57.
Complex formation between delta protein and F-actin has been demonstrated by electrophoretic technique. The high turbidity of F-actin solutions has made it necessary to work at low concentrations of this protein (0.8 to 1.6 mg/ml). Delta protein concentrations were four to six times greater. At higher concentrations all F-actin was bound to delta protein, on both limbs. The combination ratio was about 1:1 by weight. We call this complex “delta-actin.” When the complex formed there was a slight fall in viscosity, indicating side-by-side union, but the turbidity greatly increased. The mobility of delta-actin was always less than that of free F-actin and sometimes also less than that of free delta protein. We earlier reported that delta protein is probably a polymer of tropomyosin. Its sedimentation constant (4.4 to 6.0 S) is higher than the of any other form of tropomyosin so far described. It may be the native molecule, its structure preserved by our relatively simple method of extraction and purification. The filaments of the I band may be composed of delta-actin. Since delta protein also forms a complex with myosin the filaments of the A band may be composed of delta-myosin. Delta protein may be a structural component which, in addition to other activities, may direct the building of both filament arrays and strengthen them.  相似文献   
58.
59.
60.
This study was carried out to investigate the early changes in erythropoietin (EPO) formation in humans in response to hypoxia. Six volunteers were exposed to simulated altitudes of 3,000 and 4,000 m in a decompression chamber for 5.5 h. EPO was measured by radioimmunoassay in serum samples withdrawn every 30 min during altitude exposure and also in two subjects after termination of hypoxia (4,000 m). EPO levels during hypoxia were significantly elevated after 114 and 84 min (3,000 and 4,000 m), rising thereafter continuously for the period investigated. Mean values increased from 16.0 to 22.5 mU/ml (3,000 m) and from 16.7 to 28.0 mU/ml (4,000 m). This rise in EPO levels corresponds to 1.8-fold (3,000 m) and 3.0-fold (4,000 m) increases in the calculated production rate of the hormone. After termination of hypoxia, EPO levels continued to rise for approximately 1.5 h and after 3 h declined exponentially with an average half-life time of 5.2 h.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号