首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   912篇
  免费   73篇
  2023年   3篇
  2022年   5篇
  2021年   13篇
  2020年   2篇
  2019年   6篇
  2018年   10篇
  2017年   10篇
  2016年   10篇
  2015年   42篇
  2014年   39篇
  2013年   52篇
  2012年   71篇
  2011年   60篇
  2010年   53篇
  2009年   51篇
  2008年   73篇
  2007年   49篇
  2006年   68篇
  2005年   60篇
  2004年   49篇
  2003年   49篇
  2002年   51篇
  2001年   8篇
  1999年   7篇
  1998年   16篇
  1997年   3篇
  1996年   12篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1984年   7篇
  1983年   6篇
  1982年   13篇
  1981年   7篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   3篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有985条查询结果,搜索用时 250 毫秒
21.
Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54–95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated. Collagen cross-link content (PYD, DPD, PEN and % of collagen) was measured on surrounding trabecular bone. We found that determinants of microdamage were mostly the age of donors, architecture, mineral characteristics and mature enzymatic cross-links. Moreover, linear microcracks were mostly associated with the bone matrix characteristics whereas diffuse damage was associated with architecture. We conclude that linear and diffuse types of microdamage seemed to have different determinants, with age being critical for both types.  相似文献   
22.
Brain-derived neurotrophic factor (BDNF) modulates the pruning of synaptically silent axonal arbors. The Met allele of the BDNF gene is associated with a reduction in the neurotrophin''s activity-dependent release. We used diffusion-weighted imaging to construct structural brain networks for 36 healthy subjects with known BDNF genotypes. Through permutation testing we discovered clear differences in connection strength between subjects carrying the Met allele and those homozygotic for the Val allele. We trained a Gaussian process classifier capable of identifying the subjects'' allelic group with 86% accuracy and high predictive value. In Met carriers structural connectivity was greatly increased throughout the forebrain, particularly in connections corresponding to the anterior and superior corona radiata as well as corticothalamic and corticospinal projections from the sensorimotor, premotor, and prefrontal portions of the internal capsule. Interhemispheric connectivity was also increased via the corpus callosum and anterior commissure, and extremely high connectivity values were found between inferior medial frontal polar regions via the anterior forceps. We propose that the decreased availability of BDNF leads to deficits in axonal maintenance in carriers of the Met allele, and that this produces mesoscale changes in white matter architecture.  相似文献   
23.
Several dietary ingredients may affect the bacterial community structure and metabolism in the porcine gut and may therefore influence animals'' health and performance. This study investigated the effects of cereal source and calcium-phosphorus (CaP) level in the diet on bacterial microbiota and metabolites, nutrient intake, and gut environment in weaned pigs. Pigs (n = 8/treatment) were fed wheat-barley- or corn-based diets with an adequate or high CaP level for 14 days. Effects on microbiota in the stomach, ileum, and midcolon were assessed using quantitative PCR. Data showed that Enterobacteriaceae, Campylobacter spp., and Helicobacter spp., which all contain highly immune reactive lipopolysaccharide (LPS), were abundant at all gut sites. Diet effects on bacteria and metabolites were moderate and occurred mainly in the upper gut, whereas no effects on bacteria, fermentation products, and LPS could be observed in the colon. Differences in carbohydrate intake with corn versus wheat-barley diets selectively stimulated Bifidobacterium in the stomach and ileum. There was a growth advantage for a few bacterial groups in the stomach and ileum of pigs fed the high versus adequate CaP level (i.e., gastric Enterobacteriaceae and ileal Enterococcus, Bacteroides-Prevotella-Porphyromonas, and Campylobacter). Interestingly, gastrointestinal pH was not affected by dietary CaP level. The present findings demonstrate the stability of the bacterial community and gut environment toward dietary changes even in young pigs. The results on stimulation of gastric and ileal Bifidobacterium by corn diets may be employed in nutritional strategies to support gut health after weaning.  相似文献   
24.

Background

Nosocomial bloodstream infections (nBSIs) are an important cause of morbidity and mortality and are the most frequent type of nosocomial infection in pediatric patients.

Methods

We identified the predominant pathogens and antimicrobial susceptibilities of nosocomial bloodstream isolates in pediatric patients (≤16 years of age) in the Brazilian Prospective Surveillance for nBSIs at 16 hospitals from 12 June 2007 to 31 March 2010 (Br SCOPE project).

Results

In our study a total of 2,563 cases of nBSI were reported by hospitals participating in the Br SCOPE project. Among these, 342 clinically significant episodes of BSI were identified in pediatric patients (≤16 years of age). Ninety-six percent of BSIs were monomicrobial. Gram-negative organisms caused 49.0% of these BSIs, Gram-positive organisms caused 42.6%, and fungi caused 8.4%. The most common pathogens were Coagulase-negative staphylococci (CoNS) (21.3%), Klebsiella spp. (15.7%), Staphylococcus aureus (10.6%), and Acinetobacter spp. (9.2%). The crude mortality was 21.6% (74 of 342). Forty-five percent of nBSIs occurred in a pediatric or neonatal intensive-care unit (ICU). The most frequent underlying conditions were malignancy, in 95 patients (27.8%). Among the potential factors predisposing patients to BSI, central venous catheters were the most frequent (66.4%). Methicillin resistance was detected in 37 S. aureus isolates (27.1%). Of the Klebsiella spp. isolates, 43.2% were resistant to ceftriaxone. Of the Acinetobacter spp. and Pseudomonas aeruginosa isolates, 42.9% and 21.4%, respectively, were resistant to imipenem.

Conclusions

In our multicenter study, we found a high mortality and a large proportion of gram-negative bacilli with elevated levels of resistance in pediatric patients.  相似文献   
25.
26.
Cardiomyocytes stop dividing after birth and postnatal heart growth is only achieved by increase in cell volume. In some species, cardiomyocytes undergo an additional incomplete mitosis in the first postnatal week, where karyokinesis takes place in the absence of cytokinesis, leading to binucleation. Proteins that regulate the formation of the actomyosin ring are known to be important for cytokinesis. Here we demonstrate for the first time that small GTPases like RhoA along with their downstream effectors like ROCK I, ROCK II and Citron Kinase show a developmental stage specific expression in heart, with high levels being expressed in cardiomyocytes only at stages when cytokinesis still occurs (i.e. embryonic and perinatal). This suggests that downregulation of many regulatory and cytoskeletal components involved in the formation of the actomyosin ring may be responsible for the uncoupling of cytokinesis from karyokinesis in rodent cardiomyocytes after birth. Interestingly, when the myocardium tries to adapt to the increased workload during pathological hypertrophy a re-expression of proteins involved in DNA synthesis and cytokinesis can be detected. Nevertheless, the adult cardiomyocytes do not appear to divide despite this upregulation of the cytokinetic machinery. The inability to undergo complete division could be due to the presence of stable, highly ordered and functional sarcomeres in the adult myocardium or could be because of the inefficiency of degradation pathways, which facilitate the division of differentiated embryonic cardiomyocytes by disintegrating myofibrils.  相似文献   
27.
Recent studies have demonstrated that the reduction of the core fucosylation on N-glycans of human IgGs is responsible for a clearly enhanced antibody-dependent cellular cytotoxicity (ADCC). This finding might give access to improved active therapeutic antibodies. Here, the expression of the tumor antigen-specific antibody IGN311 was performed in a glyco-optimized strain of the moss Physcomitrella patens. Removal of plant specific N-glycan structures in this plant expression host was achieved by targeted knockout of corresponding genes and included quantitative elimination of core fucosylation. Antibodies transiently expressed and secreted by such genetically modified moss protoplasts assembled correctly, showed an unaltered antigen-binding affinity and, in extensive tests, revealed an up to 40-fold enhanced ADCC. Thus, the glyco-engineered moss-based transient expression platform combines a rapid technology with the subsequent analysis of glycooptimized therapeutics with regard to advanced properties.  相似文献   
28.

Background

Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established.

Methodology/Principal Findings

We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (1013ph/cm2/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus.

Conclusion/Significance

These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.  相似文献   
29.
The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified ‘β-clasp’ structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.  相似文献   
30.
HSP 70.1 is one of the first genes to be expressed in the mouse embryo at the time of zygotic genome activation. We studied the regulation of this gene, using a transgene associating HSP 70.1 promoter and the firefly luciferase reporter gene, which allows the precise quantification of HSP 70.1 level of expression on individual embryos. In the present work, we show first that the level of HSP 70.1 expression at the two-cell stage is significantly higher (around two-fold) in embryos whose maternal cytoplasm is from C3H strain than with BALB/c strain. We verified that this difference is not an artefact of the use of transgenic embryos, of the time of first cleavage, or of in vitro culture. This regulation of HSP 70.1 level of expression is controlled by strain-specific maternal modifiers and is independent of replication, syngamy, and mitosis. Following nuclear transfer, reactivation of HSP 70.1 is also subjected to the same epigenetic influence. Only the strain-of-origin of the recipient cytoplast modulates the level of HSP 70.1 reprogrammation; the origin of donor nucleus is not significant, demonstrating the reversibility of this strain effect. These results point out the importance of the quality of recipient cytoplast in the intensity of gene reprogrammation, which may be of importance for nuclear transfer efficiency. © 1996 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号