首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5005篇
  免费   716篇
  国内免费   1篇
  2021年   69篇
  2020年   43篇
  2019年   55篇
  2018年   64篇
  2017年   50篇
  2016年   99篇
  2015年   163篇
  2014年   187篇
  2013年   208篇
  2012年   264篇
  2011年   273篇
  2010年   196篇
  2009年   157篇
  2008年   220篇
  2007年   214篇
  2006年   195篇
  2005年   195篇
  2004年   184篇
  2003年   164篇
  2002年   183篇
  2001年   132篇
  2000年   120篇
  1999年   104篇
  1998年   60篇
  1997年   51篇
  1996年   56篇
  1995年   49篇
  1994年   56篇
  1993年   49篇
  1992年   98篇
  1991年   99篇
  1990年   80篇
  1989年   87篇
  1988年   101篇
  1987年   83篇
  1986年   76篇
  1985年   61篇
  1984年   65篇
  1983年   63篇
  1982年   51篇
  1981年   69篇
  1980年   54篇
  1979年   74篇
  1978年   55篇
  1977年   49篇
  1976年   47篇
  1975年   43篇
  1974年   68篇
  1973年   63篇
  1967年   43篇
排序方式: 共有5722条查询结果,搜索用时 15 毫秒
991.
Oleic acid (OA) is a nonesterified fatty acid that is released into the blood during lipomobilization at the time of calving in cows, a period where increased risk of infection and acute inflammation is observed. These data suggest potential OA-mediated regulation of innate immune responses. In the present study, we assessed the effects of OA on intracellular calcium release, ERK1/2 phosphorylation, superoxide production, CD11b expression and matrix metalloproteinase-9 (MMP-9) release in bovine neutrophils. Furthermore, the presence of GPR40, an OA receptor, was assessed by RT-PCR, immunoblotting and confocal microscopy. OA induced, in a dose-dependent manner, intracellular calcium mobilization, superoxide production and CD11b expression in bovine neutrophils; these effects were reduced by the intracellular chelating agent BAPTA-AM. OA also induced ERK2 phosphorylation and MMP-9 release. RT-PCR analysis detected mRNA expression of a bovine ortholog of the GPR40 receptor. Using a polyclonal antibody against human GPR40, we detected a protein of 31 kDa by immunoblotting that was localized predominately in the plasma membrane. The selective agonist of GPR40, GW9508, induced intracellular calcium mobilization and ERK2 phosphorylation. In conclusion, OA can modulate bovine neutrophil responses in an intracellular calcium-dependent manner; furthermore, these responses could be induced by GPR40 activation.  相似文献   
992.
Ureases, nickel-dependent enzymes that catalyze the hydrolysis of urea into ammonia and bicarbonate, are widespread in plants, bacteria, and fungi. Previously, we cloned a cDNA encoding a Canavalia ensiformis urease isoform named JBURE-II, corresponding to a putative smaller urease protein (78kDa) when compared to other plant ureases. Aiming to produce the recombinant protein, we obtained jbure-IIb, with different 3' and 5' ends, encoding a 90kDa urease. Three peptides unique to the JBURE-II/-IIb protein were detected by mass spectrometry in seed extracts, indicating that jbure-II/-IIb is a functional gene. Comparative modeling indicates that JBURE-IIb urease has an overall shape almost identical to C. ensiformis major urease JBURE-I with all residues critical for urease activity. The cDNA was cloned into the pET101 vector and the recombinant protein was produced in Escherichia coli. The JBURE-IIb protein, although enzymatically inactive presumably due to the absence of Ni atoms in its active site, impaired the growth of a phytopathogenic fungus and showed entomotoxic properties, inhibiting diuresis of Rhodnius prolixus isolated Malpighian tubules, in concentrations similar to those reported for JBURE-I and canatoxin. The antifungal and entomotoxic properties of the recombinant JBURE-IIb apourease are consistent with a protective role of ureases in plants.  相似文献   
993.
The electronic properties of the Mn(4)O(x)Ca cluster in the S(2) state of the oxygen-evolving complex (OEC) were studied using X- and Q-band EPR and Q-band (55)Mn-ENDOR using photosystem II preparations isolated from the thermophilic cyanobacterium T. elongatus and higher plants (spinach). The data presented here show that there is very little difference between the two species. Specifically it is shown that: (i) only small changes are seen in the fitted isotropic hyperfine values, suggesting that there is no significant difference in the overall spin distribution (electronic coupling scheme) between the two species; (ii) the inferred fine-structure tensor of the only Mn(III) ion in the cluster is of the same magnitude and geometry for both species types, suggesting that the Mn(III) ion has the same coordination sphere in both sample preparations; and (iii) the data from both species are consistent with only one structural model available in the literature, namely the Siegbahn structure [Siegbahn, P. E. M. Accounts Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al., Phys. Chem. Chem. Phys.2009, 11, 6788-6798]. These measurements were made in the presence of methanol because it confers favorable magnetic relaxation properties to the cluster that facilitate pulse-EPR techniques. In the absence of methanol the separation of the ground state and the first excited state of the spin system is smaller. For cyanobacteria this effect is minor but in plant PS II it leads to a break-down of the S(T)=? spin model of the S(2) state. This suggests that the methanol-OEC interaction is species dependent. It is proposed that the effect of small organic solvents on the electronic structure of the cluster is to change the coupling between the outer Mn (Mn(A)) and the other three Mn ions that form the trimeric part of the cluster (Mn(B), Mn(C), Mn(D)), by perturbing the linking bis-μ-oxo bridge. The flexibility of this bridging unit is discussed with regard to the mechanism of O-O bond formation.  相似文献   
994.
To identify the animal sources for Cryptosporidium and Giardia contamination, we genotyped Cryptosporidium and Giardia spp. in wildlife from Sydney’s water catchments using sequence analysis at the 18S rRNA locus for Cryptosporidium and 18S rRNA and glutamate dehydrogenase (gdh) for Giardia. A total of 564 faecal samples from 16 different host species were analysed. Cryptosporidium was identified in 8.5% (48/564) samples from eight host species and Giardia was identified in 13.8% (78/564) from seven host species. Eight species/genotypes of Cryptosporidium were identified. Five G. duodenalis assemblages were detected including the zoonotic assemblages A and B.  相似文献   
995.
996.
The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His(6)-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His(6)-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis.  相似文献   
997.
Prolactin (PRL) is essential for normal reproduction and signals through two types of receptors, the short (PRL-RS) and long (PRL-RL) form. We have previously shown that transgenic mice expressing only PRL-RS (PRLR(-/-)RS) display abnormal follicular development and premature ovarian failure. Here, we report that MAPK, essential for normal follicular development, is critically inhibited by PRL in reproductive tissues of PRLR(-/-)RS mice. Consequently, the phosphorylation of MAPK downstream targets are also markedly inhibited by PRL without affecting immediate upstream kinases, suggesting involvement of MAPK specific phosphatase(s) in this inhibition. Similar results are obtained in a PRL-responsive ovary-derived cell line (GG-CL) that expresses only PRL-RS. However, we found the expression/activation of several known MAPK phosphatases not to be affected by PRL, suggesting a role of unidentified phosphatase(s). We detected a 27-kDa protein that binds to the intracellular domain of PRL-RS and identified it as dual specific phosphatase DUPD1. PRL does not induce expression of DUDP1 but represses its phosphorylation on Thr-155. We also show a physical association of this phosphatase with ERK1/2 and p38 MAPK. Using an in vitro phosphatase assay and overexpression studies, we established that DUPD1 is a MAPK phosphatase. Dual specific phosphatase inhibitors as well as siRNA to DUPD1, completely prevent PRL-mediated MAPK inhibition in ovarian cells. Our results strongly suggest that deactivation of MAPK by PRL/PRL-RS contributes to the severe ovarian defect in PRLR(-/-)RS mice and demonstrate the novel association of PRL-RS with DUPD1 and a role for this phosphatase in MAPK deactivation.  相似文献   
998.
The application of inorganic nitrogen (N) fertilizers strongly influences the contribution of agriculture to the greenhouse effect, especially by potentially increasing emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) from soils. The present microcosm-study investigates the effect of different forms of inorganic N fertilizers on greenhouse gas (GHG) emissions from two different agricultural soils. The relationship between greenhouse gas emissions and soil microbial communities, N transformation rates and plant (Hordeum vulgare L. cv. Morex) growth were investigated. Repeated N fertilization led to increased N2O emissions. In a parallel survey of functional microbial population dynamics we observed a stimulation of bacterial and archaeal ammonia oxidisers accompanied with these N2O emissions. The ratio of archaeal to bacterial ammonium monooxygenase subunit A (amoA) gene copies (data obtained from Inselsbacher et al., 2010) correlated positively with N2O fluxes, which suggests a direct or indirect involvement of archaea in N2O fluxes. Repeated N fertilization also stimulated methane oxidation, which may also be related to a stimulation of ammonia oxidizers. The fertilizer effects differed between soil types: In the more organic Niederschleinz soil N-turnover rates increased more strongly after fertilization, while in the sandy Purkersdorf soil plant growth and soil respiration were accelerated depending on fertilizer N type. Compared to addition of NH 4 + and NO 3 ? , addition of NH4NO3 fertilizer resulted in the largest increase in global warming potential as a summary indicator of all GHG related effects. This effect resulted from the strongest increase of both N2O and CO2 emission while plant growth was not equally stimulated, compared to e.g. KNO3 fertilization. In order to decrease N losses from agricultural ecosystems and in order to minimize soil derived global warming potential, this study points to the need for interdisciplinary investigations of the highly complex interactions within plant-soil-microbe-atmosphere systems. By understanding the microbial processes underlying fertilizer effects on GHG emissions the N use efficiency of crops could be refined.  相似文献   
999.
Singer SD  Hily JM  Cox KD 《Planta》2011,234(3):623-637
Interest in phloem-specific promoters for the engineering of transgenic plants has been increasing in recent years. In this study we isolated two similar, but distinct, alleles of the Citrus sinensis sucrose synthase-1 promoter (CsSUS1p) and inserted them upstream of the β-glucuronidase (GUS) gene to test their ability to drive expression in the phloem of transgenic Arabidopsis thaliana and Nicotiana tabacum. Although both promoter variants were capable of conferring localized GUS expression in the phloem, the CsSUS1p-2 allele also generated a significant level of expression in non-target tissues. Unexpectedly, GUS expression was also instigated in a minority of CsSUS1p::GUS lines in response to wounding in the leaves of transgenic Arabidopsis. Deletion analysis of the CsSUS1p suggested that a fragment comprising nucleotides −410 to −268 relative to the translational start site contained elements required for phloem-specific expression while nucleotides −268 to −103 contained elements necessary for wound-specific expression. Interestingly, the main difference between the two CsSUS1p alleles was the presence of a 94-bp insertion in allele 2. Fusion of this indel to a minimal promoter and GUS reporter gene indicated that it contained stamen and carpel-specific enhancer elements. This finding of highly specific and separable regulatory units within the CsSUS1p suggests that this promoter may have a potential application in the generation of constructs for the use in the development of transgenic plants resistant to a wide variety of target pests.  相似文献   
1000.
In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号