首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1900篇
  免费   193篇
  2023年   8篇
  2022年   21篇
  2021年   28篇
  2020年   25篇
  2019年   25篇
  2018年   34篇
  2017年   30篇
  2016年   51篇
  2015年   85篇
  2014年   114篇
  2013年   129篇
  2012年   139篇
  2011年   135篇
  2010年   87篇
  2009年   82篇
  2008年   96篇
  2007年   98篇
  2006年   114篇
  2005年   90篇
  2004年   81篇
  2003年   84篇
  2002年   63篇
  2001年   35篇
  2000年   26篇
  1999年   26篇
  1998年   22篇
  1997年   18篇
  1996年   21篇
  1995年   11篇
  1994年   12篇
  1993年   12篇
  1992年   22篇
  1991年   16篇
  1990年   8篇
  1989年   10篇
  1988年   8篇
  1987年   11篇
  1986年   7篇
  1985年   11篇
  1984年   13篇
  1983年   17篇
  1982年   14篇
  1981年   18篇
  1980年   12篇
  1979年   13篇
  1978年   10篇
  1977年   8篇
  1976年   7篇
  1975年   6篇
  1974年   7篇
排序方式: 共有2093条查询结果,搜索用时 218 毫秒
51.
52.
In an institution for the mentally retarded, an uncontrolled study was made on the effects of d-amphetamine, d-amphetamine followed by trifluoperazine, and of combined d-amphetamine and trifluoperazine on stuttering. Of 28 patients to whom d-amphetamine was given, 14 showed improvement after one month''s treatment. Eight more showed improvement when trifluoperazine was given for one month to those who did not improve on d-amphetamine. In many cases, improvement was sustained at least six months after treatment was discontinued.Treatment with d-amphetamine was apparently more effective in patients with functional than with organic retardation.  相似文献   
53.
Germ cells occupy a unique position in animal reproduction, development, and evolution. In sexually reproducing animals, only they can produce gametes and contribute genetically to subsequent generations. Nonetheless, germ line specification during embryogenesis is conceptually the same as the specification of any somatic cell type: germ cells must activate a specific gene regulatory network in order to differentiate and go through gametogenesis. While many genes with critical roles in the germ line have been characterized with respect to expression pattern and genetic interactions, it is the molecular interactions of the relevant gene products that are ultimately responsible for germ cell differentiation. This review summarizes the current state of knowledge on the molecular functions and biochemical connections between germ line gene products. We find that homologous genes often interact physically with the same conserved molecular partners across the metazoans. We also point out cases of nonhomologous genes from different species whose gene products play analogous biological roles in the germ line. We suggest a preliminary molecular definition of an ancestral “pluripotency module” that could have been modified during metazoan evolution to become specific to the germ line. Mol. Reprod. Dev. 77: 3–18, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
54.
55.
During pregnancy, the placenta regulates the transfer of oxygen, nutrients, and residual products between the maternal and fetal bloodstreams and is a key determinant of fetal exposure to xenobiotics from the mother. To study the disposition of substances through the placenta, various experimental models are used, especially the perfused placenta, placental villi explants, and cell lineage models. In this context, nanotechnology, an area of study that is on the rise, enables the creation of particles on nanometric scales capable of releasing drugs aimed at specific tissues. An important reason for furthering the studies on transplacental transfer is to explore the potential of nanoparticles (NPs), in new delivery strategies for drugs that are specifically aimed at the mother, the placenta, or the fetus and that involve less toxicity. Due to the fact that the placental barrier is essential for the interaction between the maternal and fetal organisms as well as the possibility of NPs being used in the treatment of various pathologies, the aim of this review is to present the main experimental models used in studying the maternal–fetal interaction and the action of NPs in the placental environment.  相似文献   
56.
Galapagos giant tortoises (Chelonoidis spp.) are a group of large, long-lived reptiles that includes 14 species, 11 of which are extant and threatened by human activities and introductions of non-native species. Here, we evaluated the phylogenetic relationships of all extant and two extinct species (Chelonoidis abingdonii from the island of Pinta and Chelonoidis niger from the island of Floreana) using Bayesian and maximum likelihood analysis of complete or nearly complete mitochondrial genomes. We also provide an updated phylogeographic scenario of their colonization of the Galapagos Islands using chrono-phylogenetic and biogeographic approaches. The resulting phylogenetic trees show three major groups of species: one from the southern, central, and western Galapagos Islands; the second from the northwestern islands; and the third group from the northern, central, and eastern Galapagos Islands. The time-calibrated phylogenetic and ancestral area reconstructions generally align with the geologic ages of the islands. The divergence of the Galapagos giant tortoises from their South American ancestor likely occurred in the upper Miocene. Their diversification on the Galapagos adheres to the island progression rule, starting in the Pleistocene with the dispersal of the ancestral form from the two oldest islands (San Cristóbal and Española) to Santa Cruz, Santiago, and Pinta, followed by multiple colonizations from different sources within the archipelago. Our work provides an example of how to reconstruct the history of endangered taxa in spite of extinctions and human-mediated dispersal events and provides a framework for evaluating the contribution of colonization and in situ speciation to the diversity of other Galapagos lineages.  相似文献   
57.
58.
Predicting the consequences of environmental changes, including human‐mediated climate change on species, requires that we quantify range‐wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations (n = 358) using 13,488 genome‐wide single nucleotide polymorphisms (SNPs) identified with double‐digest restriction site‐associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation. These data on the genetic structure of polar bears using SNPs provide a detailed baseline against which future shifts in population structure can be assessed, and opportunities to develop new noninvasive tools for monitoring polar bears across their range.  相似文献   
59.
Plant Cell, Tissue and Organ Culture (PCTOC) - A biotechnological system for the production of plants biomass and phenylpropanoids of maqui was developed in photomixotrophic TIBs. The in vitro...  相似文献   
60.
Parkinson''s disease (PD) is a neurodegenerative disorder that affects adult people whose treatment is palliative. Thus, we decided to test three dammarane triterpenes 1, 1a, 1b, and we determined that 1 and 1a inhibit β-aggregation through thioflavine T rather than 1b. Since compound 1 was most active, we determined the interaction between α-synuclein and 1 at 50 µM (Kd) through microscale thermophoresis. Also, we observed differences in height and diameter of aggregates, and α-synuclein remains unfolded in the presence of 1. Also, aggregates treated with 1 do not provoke neurites'' retraction in N2a cells previously induced by retinoic acid. Finally, we studied the potential sites of interaction between 1 with α-synuclein fibrils using molecular modelling. Docking experiments suggest that 1 preferably interact with the site 2 of α-synuclein through hydrogen bonds with residues Y39 and T44.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号