The effects of prenatal protein restriction on adult renal and cardiovascular function have been studied in considerable detail. However, little is known about the effects of life-long protein restriction, a common condition in the developing world. Therefore, we determined in rats the effects of combined pre- and postnatal protein restriction on adult arterial pressure and renal function and responses to increased dietary sodium. Nephron number was also determined. Male Sprague-Dawley rats were born to mothers fed a low [8% (wt/wt), LP] or normal [20% (wt/wt), NP] isocaloric protein diet throughout pregnancy and maintained on these diets after birth. At postnatal day 135, nephron number, mean arterial pressure (MAP), and renal function were determined. A high-NaCl [8.0% (wt/wt), high-salt] diet was fed to a subset of rats from weaning. MAP was less in LP than in NP rats (120 +/- 2 vs. 128 +/- 2 mmHg, P < 0.05) and was not significantly altered by increased salt intake. Nephron number was 31% less in LP than in NP rats (P < 0.001). The volume of individual glomeruli was also less in LP than in NP rats, as were calculated effective renal plasma flow and glomerular filtration rate. Glomerular filtration rate, but not effective renal plasma flow, appeared to be increased by high salt intake, particularly in LP rats. In conclusion, protein restriction induced a severe nephron deficit, but MAP was lower, rather than higher, in protein-restricted than in control rats in adulthood. These findings indicate that the postnatal environment plays a key role in determining the outcomes of developmental programming. 相似文献
Accurate assessment of species identity is fundamental for conservation biology. Using molecular markers from the mitochondrial and nuclear genomes, we discovered that many putatively native populations of greenback cutthroat trout (Oncorhynchus clarkii stomias) comprised another subspecies of cutthroat trout, Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). The error can be explained by the introduction of Colorado River cutthroat trout throughout the native range of greenback cutthroat trout in the late 19th and early 20th centuries by fish stocking activities. Our results suggest greenback cutthroat trout within its native range is at a higher risk of extinction than ever before despite conservation activities spanning more than two decades. 相似文献
Microarray analysis of tumour RNA is an extremely powerful tool which allows global gene expression to be measured. When used in combination with neoadjuvant treatment protocols in which therapy is given with the primary tumour within the breast, sequential biopsies may be analysed and results correlated with clinical and pathological response. In the present study, a neoadjuvant protocol has been used, administering the third generation inhibitor, letrozole, for 3 months and subjecting RNA extracted from biopsies taken before and after 10–14 days of treatment to microarray analysis. The objectives were to discover: (i) genes that change with estrogen deprivation (the only known biological effect of letrozole is to inhibit aromatase activity and reduce endogenous estrogens in postmenopausal women) and (ii) genes whose basal, on treatment or change in expression differ between tumours which are either responsive or resistant to treatment (so that predictive indices of response/resistance may be developed).
Early changes in gene expression were identified by comparing paired tumour core biopsies taken before and after 14 days treatment in 58 patients using three different approaches based on frequency of changes, magnitude of changes and SAM analysis. All three approaches showed a greater number of genes were down-regulated than up-regulated. Merging of the data produced a total of 143 genes which were subject to gene ontology and cluster analysis. The ontology of the 91 down-regulated genes showed that they were functionally associated with cell cycle progression, particularly mitosis. In contrast, up-regulated genes were associated with organ development and extra-cellular matrix turnover and regulation.
Clinical response was assessable in 52 patients; 37 (71%) tumours were classified as clinical responders (>50% reduction in volume at 3 months). Microarray analysis of pre- and 14-day biopsies identified 291 covariates (84 baselines, 72 14-day and 135 changes) highly predictive of response status. A similarity matrix using the covariates showed responding tumours have a similar genetic profile which was dissimilar to non-responding cancers whereas non-responsive cases were distinctive from each other. Changed genes predicting for response showed no concordance with those changed significantly by treatment in the overall group. 相似文献
Nucleic acids that contain multiple sequential guanines assemble into guanine quadruplexes (G-quadruplexes). Drugs that induce or stabilize G-quadruplexes are of interest because of their potential use as therapeutics. Previously, we reported on the interaction of the Cu(2+) derivative of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine (CuTMpyP4), with the parallel-stranded G-quadruplexes formed by d(T(4)G( n )T(4)) (n = 4 or 8) (Keating and Szalai in Biochemistry 43:15891-15900, 2004). Here we present further characterization of this system using a series of guanine-rich oligonucleotides: d(T(4)G( n )T(4)) (n = 5-10). Absorption titrations of CuTMpyP4 with all d(T(4)G( n )G(4)) quadruplexes produce approximately the same bathochromicity (8.3 +/- 2 nm) and hypochromicity (46.2-48.6%) of the porphyrin Soret band. Induced emission spectra of CuTMpyP4 with d(T(4)G( n )T(4))(4) quadruplexes indicate that the porphyrin is protected from solvent. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry revealed a maximum porphyrin to quadruplex stoichiometry of 2:1 for the shortest (n = 4) and longest (n = 10) quadruplexes. Electron paramagnetic resonance spectroscopy shows that bound CuTMpyP4 occupies magnetically noninteracting sites on the quadruplexes. Consistent with our previous model for d(T(4)G(4)T(4)), we propose that two CuTMpyP4 molecules are externally stacked at each end of the run of guanines in all d(T(4)G( n )T(4)) (n = 4-10) quadruplexes. 相似文献
Reviews in Fish Biology and Fisheries - Marine ecosystems and their associated biodiversity sustain life on Earth and hold intrinsic value. Critical marine ecosystem services include maintenance of... 相似文献
HisA is a (βα)8 barrel enzyme that catalyzes the Amadori rearrangement of N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N′-((5′-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis. 相似文献
Septic shock is a leading cause of death, and it results from an inflammatory cascade triggered by the presence of microbial products in the blood. Certain LPS from Gram-negative bacteria are very potent inducers and are responsible for a high percentage of septic shock cases. Despite decades of research, mAbs specific for lipid A (the endotoxic principle of LPS) have not been successfully developed into a clinical treatment for sepsis. To understand the molecular basis for the observed inability to translate in vitro specificity for lipid A into clinical potential, the structures of antigen-binding fragments of mAbs S1–15 and A6 have been determined both in complex with lipid A carbohydrate backbone and in the unliganded form. The two antibodies have separate germ line origins that generate two markedly different combining-site pockets that are complementary both in shape and charge to the antigen. mAb A6 binds lipid A through both variable light and heavy chain residues, whereas S1–15 utilizes exclusively the variable heavy chain. Both antibodies bind lipid A such that the GlcN-O6 attachment point for the core oligosaccharide is buried in the combining site, which explains the lack of LPS recognition. Longstanding reports of polyspecificity of anti-lipid A antibodies toward single-stranded DNA combined with observed homology of S1–15 and A6 and the reports of several single-stranded DNA-specific mAbs prompted the determination of the structure of S1–15 in complex with single-stranded DNA fragments, which may provide clues about the genesis of autoimmune diseases such as systemic lupus erythematosus, thyroiditis, and rheumatic autoimmune diseases. 相似文献