首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7273篇
  免费   901篇
  国内免费   4篇
  2021年   78篇
  2018年   89篇
  2017年   75篇
  2016年   111篇
  2015年   156篇
  2014年   210篇
  2013年   281篇
  2012年   307篇
  2011年   289篇
  2010年   186篇
  2009年   171篇
  2008年   257篇
  2007年   229篇
  2006年   236篇
  2005年   203篇
  2004年   212篇
  2003年   226篇
  2002年   202篇
  2001年   223篇
  2000年   219篇
  1999年   195篇
  1998年   94篇
  1997年   92篇
  1995年   89篇
  1994年   91篇
  1993年   75篇
  1992年   174篇
  1991年   170篇
  1990年   160篇
  1989年   154篇
  1988年   163篇
  1987年   139篇
  1986年   124篇
  1985年   161篇
  1984年   121篇
  1983年   116篇
  1982年   108篇
  1981年   87篇
  1980年   91篇
  1979年   138篇
  1978年   91篇
  1977年   92篇
  1976年   96篇
  1975年   89篇
  1974年   105篇
  1973年   95篇
  1972年   85篇
  1971年   77篇
  1969年   71篇
  1968年   64篇
排序方式: 共有8178条查询结果,搜索用时 31 毫秒
991.
To identify genetic loci influencing bone accrual, we performed a genome-wide association scan for total-body bone mineral density (TB-BMD) variation in 2,660 children of different ethnicities. We discovered variants in 7q31.31 associated with BMD measurements, with the lowest P = 4.1 × 10(-11) observed for rs917727 with minor allele frequency of 0.37. We sought replication for all SNPs located ± 500 kb from rs917727 in 11,052 additional individuals from five independent studies including children and adults, together with de novo genotyping of rs3801387 (in perfect linkage disequilibrium (LD) with rs917727) in 1,014 mothers of children from the discovery cohort. The top signal mapping in the surroundings of WNT16 was replicated across studies with a meta-analysis P = 2.6 × 10(-31) and an effect size explaining between 0.6%-1.8% of TB-BMD variance. Conditional analyses on this signal revealed a secondary signal for total body BMD (P = 1.42 × 10(-10)) for rs4609139 and mapping to C7orf58. We also examined the genomic region for association with skull BMD to test if the associations were independent of skeletal loading. We identified two signals influencing skull BMD variation, including rs917727 (P = 1.9 × 10(-16)) and rs7801723 (P = 8.9 × 10(-28)), also mapping to C7orf58 (r(2) = 0.50 with rs4609139). Wnt16 knockout (KO) mice with reduced total body BMD and gene expression profiles in human bone biopsies support a role of C7orf58 and WNT16 on the BMD phenotypes observed at the human population level. In summary, we detected two independent signals influencing total body and skull BMD variation in children and adults, thus demonstrating the presence of allelic heterogeneity at the WNT16 locus. One of the skull BMD signals mapping to C7orf58 is mostly driven by children, suggesting temporal determination on peak bone mass acquisition. Our life-course approach postulates that these genetic effects influencing peak bone mass accrual may impact the risk of osteoporosis later in life.  相似文献   
992.
Several acyclic hydroxy-methylthio-amines with 3-5 carbon atoms were prepared and coupled via a methylene link to 9-deazaadenine. The products were tested for inhibition against human MTAP and Escherichia coli and Neisseria meningitidis MTANs and gave K(i) values as low as 0.23nM. These results were compared to those obtained with 1st and 2nd generation inhibitors (1S)-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-5-methylthio-d-ribitol (MT-Immucillin-A, 3) and (3R,4S)-1-[9-deazaadenin-9-yl)methyl]3-hydroxy-4-methylthiomethylpyrrolidine (MT-DADMe-Immucillin-A, 4). The best inhibitors were found to exhibit binding affinities of approximately 2- to 4-fold those of 3 but were significantly weaker than 4. Cleavage of the 2,3 carbon-carbon bond in MT-Immucillin-A (3) gave an acyclic product (79) with a 21,500 fold loss of activity against E. coli MTAN. In another case, N-methylation of a side chain secondary amine resulted in a 250-fold loss of activity against the same enzyme [(±)-65 vs (±)-68]. The inhibition results were also contrasted with those acyclic derivatives previously prepared as inhibitors for a related enzyme, purine nucleoside phosphorylase (PNP), where some inhibitors in the latter case were found to be more potent than their cyclic counterparts.  相似文献   
993.
Fragile X syndrome, the most prevalent inheritable mental retardation, is caused by the loss of fragile X mental retardation protein (FMRP) expression. FMRP is an RNA-binding protein with nucleo-cytoplasmic shuttle activity, proposed to act as a translation regulator of specific mRNAs in the brain. It has been shown that FMRP uses its arginine-glycine-glycine (RGG) box domain to bind a subset of mRNA targets that form a G-quadruplex structure. FMRP has also been shown to undergo the post-translational modifications of arginine methylation and phosphorylation, as well as alternative splicing, resulting in multiple isoforms. The alternative splice isoforms investigated in this study, isoform 1 (ISO1), isoform 2 (ISO2), and isoform 3 (ISO3), are created by the alternative splicing acceptor site at exon 15. FMRP ISO2 and ISO3 are truncated by 12 and 13 residues, respectively, relative to the longest FMRP isoform ISO1. These truncations, which are in the close proximity of the RGG box domain, preserve the integrity of the RGG box in all three isoforms, but eliminate the in vivo phosphorylation sites, present only on FMRP ISO1. We have expressed and purified recombinant FMRP ISO1, ISO2 and ISO3 in Escherichia coli, free of post-translational modifications, and by using fluorescence spectroscopy, we show that each FMRP isoform binds G-quadruplex RNA, albeit with different binding affinities, suggesting that naturally occurring sequence modifications in the proximity of the RGG box modulate its G-quadruplex RNA binding ability.  相似文献   
994.
995.
Conodont elements are the earliest vertebrate dental structures. The dental tools on elements responsible for food fracture—cusps and denticles—are usually composed of lamellar crown tissue (a putative enamel homologue) and the enigmatic tissue known as ‘white matter’. White matter is unique to conodonts and has been hypothesized to be a functional adaptation for the use of elements as teeth. We test this quantitatively using finite-element analysis. Our results indicate that white matter allowed cusps and denticles to withstand greater tensile stresses than do cusps comprised solely of lamellar crown tissue. Microstructural variation is demonstrably associated with dietary and loading differences in teeth, so secondary loss of white matter through conodont phylogeny may reflect changes in diet and element occlusal kinematics. The presence, development and distribution of white matter could thus provide constraints on function in the first vertebrate dental structures.  相似文献   
996.

Background

There are several common ways to encode a tree as a matrix, such as the adjacency matrix, the Laplacian matrix (that is, the infinitesimal generator of the natural random walk), and the matrix of pairwise distances between leaves. Such representations involve a specific labeling of the vertices or at least the leaves, and so it is natural to attempt to identify trees by some feature of the associated matrices that is invariant under relabeling. An obvious candidate is the spectrum of eigenvalues (or, equivalently, the characteristic polynomial).

Results

We show for any of these choices of matrix that the fraction of binary trees with a unique spectrum goes to zero as the number of leaves goes to infinity. We investigate the rate of convergence of the above fraction to zero using numerical methods. For the adjacency and Laplacian matrices, we show that the a priori more informative immanantal polynomials have no greater power to distinguish between trees.

Conclusion

Our results show that a generic large binary tree is highly unlikely to be identified uniquely by common spectral invariants.  相似文献   
997.
Honey bee samples collected between 1995 and 2007 from 12 states were examined for the presence of Nosema infections. Our results showed that Nosema ceranae is a wide-spread infection of the European honey bee, Apis mellifera in the United States. The discovery of N. ceranae in bees collected a decade ago indicates that N. ceranae was transferred from its original host, Apis cerana to A. mellifera earlier than previously recognized. The spread of N. ceranae infection in A. mellifera warrants further epidemiological studies to identify conditions that resulted in such a widespread infection.  相似文献   
998.
The genome of hepatitis C virus (HCV) contains cis-acting replication elements (CREs) comprised of RNA stem-loop structures located in both the 5' and 3' noncoding regions (5' and 3' NCRs) and in the NS5B coding sequence. Through the application of several algorithmically independent bioinformatic methods to detect phylogenetically conserved, thermodynamically favored RNA secondary structures, we demonstrate a long-range interaction between sequences in the previously described CRE (5BSL3.2, now SL9266) with a previously predicted unpaired sequence located 3' to SL9033, approximately 200 nucleotides upstream. Extensive reverse genetic analysis both supports this prediction and demonstrates a functional requirement in genome replication. By mutagenesis of the Con-1 replicon, we show that disruption of this alternative pairing inhibited replication, a phenotype that could be restored to wild-type levels through the introduction of compensating mutations in the upstream region. Substitution of the CRE with the analogous region of different genotypes of HCV produced replicons with phenotypes consistent with the hypothesis that both local and long-range interactions are critical for a fundamental aspect of genome replication. This report further extends the known interactions of the SL9266 CRE, which has also been shown to form a "kissing loop" interaction with the 3' NCR (P. Friebe, J. Boudet, J. P. Simorre, and R. Bartenschlager, J. Virol. 79:380-392, 2005), and suggests that cooperative long-range binding with both 5' and 3' sequences stabilizes the CRE at the core of a complex pseudoknot. Alternatively, if the long-range interactions were mutually exclusive, the SL9266 CRE may function as a molecular switch controlling a critical aspect of HCV genome replication.  相似文献   
999.
1000.
Vaccinia virus replication is inhibited by etoposide and mitoxantrone even though poxviruses do not encode the type II topoisomerases that are the specific targets of these drugs. Furthermore, one can isolate drug-resistant virus carrying mutations in the viral DNA ligase and yet the ligase is not known to exhibit sensitivity to these drugs. A yeast two-hybrid screen was used to search for proteins binding to vaccinia ligase, and one of the nine proteins identified comprised a portion (residue 901 to end) of human topoisomerase IIbeta. One can prevent the interaction by introducing a C(11)-to-Y substitution mutation into the N terminus of the ligase bait protein, which is one of the mutations conferring etoposide and mitoxantrone resistance. Coimmunoprecipitation methods showed that the native ligase and a Flag-tagged recombinant protein form complexes with human topoisomerase IIalpha/beta in infected cells and that this interaction can also be disrupted by mutations in the A50R (ligase) gene. Immunofluorescence microscopy showed that both topoisomerase IIalpha and IIbeta antigens are recruited to cytoplasmic sites of virus replication and that less topoisomerase was recruited to these sites in cells infected with mutant virus than in cells infected with wild-type virus. Immunoelectron microscopy confirmed the presence of topoisomerases IIalpha/beta in virosomes, but the enzyme could not be detected in mature virus particles. We propose that the genetics of etoposide and mitoxantrone resistance can be explained by vaccinia ligase binding to cellular topoisomerase II and recruiting this nuclear enzyme to sites of virus biogenesis. Although other nuclear DNA binding proteins have been detected in virosomes, this appears to be the first demonstration of an enzyme being selectively recruited to sites of poxvirus DNA synthesis and assembly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号