首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18321篇
  免费   1964篇
  国内免费   12篇
  20297篇
  2021年   182篇
  2018年   195篇
  2017年   166篇
  2016年   286篇
  2015年   418篇
  2014年   521篇
  2013年   725篇
  2012年   833篇
  2011年   846篇
  2010年   578篇
  2009年   515篇
  2008年   768篇
  2007年   796篇
  2006年   779篇
  2005年   761篇
  2004年   781篇
  2003年   729篇
  2002年   744篇
  2001年   338篇
  2000年   312篇
  1999年   349篇
  1998年   256篇
  1997年   210篇
  1996年   191篇
  1995年   202篇
  1994年   249篇
  1993年   202篇
  1992年   281篇
  1991年   277篇
  1990年   267篇
  1989年   261篇
  1988年   261篇
  1987年   238篇
  1986年   216篇
  1985年   285篇
  1984年   254篇
  1983年   232篇
  1982年   277篇
  1981年   274篇
  1980年   268篇
  1979年   246篇
  1978年   236篇
  1977年   224篇
  1976年   206篇
  1975年   181篇
  1974年   228篇
  1973年   215篇
  1972年   163篇
  1970年   137篇
  1969年   149篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Skin is the most commonly affected organ in graft-versus-host disease (GVHD). To explore the role of Langerhans cells in GVHD, the principal dendritic cells of the skin, we studied the fate of these cells in mice transplanted with allogeneic bone marrow. In contrast to other dendritic cells, host Langerhans cells were replaced by donor Langerhans cells only when donor T cells were administered along with bone marrow, and the extent of Langerhans cell chimerism correlated with the dose of donor T cells injected. Donor T cells depleted host Langerhans cells through a Fas-dependent pathway and induced the production in skin of CCL20, which was required for the recruitment of donor Langerhans cells. Administration of donor T cells to bone marrow-chimeric mice with persistent host Langerhans cells, but not to mice whose Langerhans cells had been replaced, resulted in marked skin GVHD. These findings indicate a crucial role for donor T cells in host Langerhans cell replacement, and show that host dendritic cells can persist in nonlymphoid tissue for the duration of an animal's life and can trigger GVHD despite complete blood chimerism.  相似文献   
992.
993.
White matter injury is the most frequently observed brain lesion in preterm infants. The etiology remains unclear, however, both cerebral hypoperfusion and intrauterine infections have been suggested as risk factors. We compared the neuropathological outcome, including the effect on oligodendrocytes, astrocytes, and microglia, following either systemic asphyxia or endotoxemia in fetal sheep at midgestation. Fetal sheep were subjected to either 25 minutes of umbilical cord occlusion or systemic endotoxemia by administration of Escherichia coli lipopolysaccharide (LPS O111:B4, 100 ng/kg, IV). Periventricular white matter lesions were observed in 2 of 6 asphyxiated fetuses, whereas the remaining animals showed diffuse injury throughout the subcortical white matter and neuronal necrosis in subcortical regions, including the striatum and hippocampus. LPS-treatment resulted in focal inflammatory infiltrates and cystic lesions in periventricular white matter in 2 of 5 animals, but with no neuron specific injury. Both experimental paradigms resulted in microglia activation in the white matter, damaged astrocytes, and loss of oligodendrocytes. These results show that the white matter at midgestation is sensitive to injury following both systemic asphyxia and endotoxemia. Asphyxia induced lesions in both white and subcortical grey matter in association with microglia activation, and endotoxemia resulted in selective white matter damage and inflammation.  相似文献   
994.
995.
The seven-residue peptide GNNQQNY from the N-terminal region of the yeast prion protein Sup35, which forms amyloid fibers, colloidal aggregates and highly ordered nanocrystals, provides a model system for characterizing the elusively protean cross-beta conformation. Depending on preparative conditions, orthorhombic and monoclinic crystals with similar lath-shaped morphology have been obtained. Ultra high-resolution (<0.5A spacing) electron diffraction patterns from single nanocrystals show that the peptide chains pack in parallel cross-beta columns with approximately 4.86A axial spacing. Mosaic striations 20-50 nm wide observed by electron microscopy indicate lateral size-limiting crystal growth related to amyloid fiber formation. Frequently obtained orthorhombic forms, with apparent space group symmetry P2(1)2(1)2(1), have cell dimensions ranging from /a/=22.7-21.2A, /b/=39.9-39.3A, /c/=4.89-4.86A for wet to dried states. Electron diffraction data from single nanocrystals, recorded in tilt series of still frames, have been mapped in reciprocal space. However, reliable integrated intensities cannot be obtained from these series, and dynamical electron diffraction effects present problems in data analysis. The diversity of ordered structures formed under similar conditions has made it difficult to obtain reproducible X-ray diffraction data from powder specimens; and overlapping Bragg reflections in the powder patterns preclude separated structure factor measurements for these data. Model protofilaments, consisting of tightly paired, half-staggered beta strands related by a screw axis, can be fit in the crystal lattices, but model refinement will require accurate structure factor measurements. Nearly anhydrous packing of this hydrophilic peptide can account for the insolubility of the crystals, since the activation energy for rehydration may be extremely high. Water-excluding packing of paired cross-beta peptide segments in thin protofilaments may be characteristic of the wide variety of anomalously stable amyloid aggregates.  相似文献   
996.
The evolution of ligand specificity underlies many important problems in biology, from the appearance of drug resistant pathogens to the re-engineering of substrate specificity in enzymes. In studying biomolecules, however, the contributions of macromolecular sequence to binding specificity can be obscured by other selection pressures critical to bioactivity. Evolution of ligand specificity in vitro—unconstrained by confounding biological factors—is addressed here using variants of three flavin-binding RNA aptamers. Mutagenized pools based on the three aptamers were combined and allowed to compete during in vitro selection for GMP-binding activity. The sequences of the resulting selection isolates were diverse, even though most were derived from the same flavin-binding parent. Individual GMP aptamers differed from the parental flavin aptamers by 7 to 26 mutations (20 to 57% overall change). Acquisition of GMP recognition coincided with the loss of FAD (flavin-adenine dinucleotide) recognition in all isolates, despite the absence of a counter-selection to remove FAD-binding RNAs. To examine more precisely the proximity of these two activities within a defined sequence space, the complete set of all intermediate sequences between an FAD-binding aptamer and a GMP-binding aptamer were synthesized and assayed for activity. For this set of sequences, we observe a portion of a neutral network for FAD-binding function separated from GMP-binding function by a distance of three mutations. Furthermore, enzymatic probing of these aptamers revealed gross structural remodeling of the RNA coincident with the switch in ligand recognition. The capacity for neutral drift along an FAD-binding network in such close approach to RNAs with GMP-binding activity illustrates the degree of phenotypic buffering available to a set of closely related RNA sequences—defined as the sets functional tolerance for point mutations—and supports neutral evolutionary theory by demonstrating the facility with which a new phenotype becomes accessible as that buffering threshold is crossed.  相似文献   
997.
Tur megistoproctus, a new species of Laelapinae, is described from the pelage of the echimyid rodent Proechimys dimidiatus from the Atlantic forests of Ilha Grande, south of Rio de Janeiro. Measurements and illustrations are included for females and males. Another laelapine mite species, Tur turki Fonseca, co-occurred with T. megistoproctus in our studies and was recorded from the same host individuals and localities. These 2 laelapine mite species appear to be exclusively associated with a complex of echimyid rodent species (subgenus Trinomys) in the Atlantic forests of southeastern Brazil.  相似文献   
998.
999.
To better understand the role of disrupted transforming growth factor beta (TGFbeta) signaling in fibrosis, we have selectively expressed a kinase-deficient human type II TGFbeta receptor (TbetaRIIDeltak) in fibroblasts of transgenic mice, using a lineage-specific expression cassette subcloned from the pro-alpha2(I) collagen gene. Surprisingly, despite previous studies that characterized TbetaRIIDeltak as a dominant negative inhibitor of TGFbeta signaling, adult mice expressing this construct demonstrated TGFbeta overactivity and developed dermal and pulmonary fibrosis. Compared with wild type cells, transgenic fibroblasts proliferated more rapidly, produced more extracellular matrix, and showed increased expression of key markers of TGFbeta activation, including plasminogen activator inhibitor-1, connective tissue growth factor, Smad3, Smad4, and Smad7. Smad2/3 phosphorylation was increased in transgenic fibroblasts. Overall, the gene expression profile of explanted transgenic fibroblasts using cDNA microarrays was very similar to that of littermate wild type cells treated with recombinant TGFbeta1. Despite basal up-regulation of TGFbeta signaling pathways, transgenic fibroblasts were relatively refractory to further stimulation with TGFbeta1. Thus, responsiveness of endogenous genes to TGFbeta was reduced, and TGFbeta-regulated promoter-reporter constructs transiently transfected into transgenic fibroblasts showed little activation by recombinant TGFbeta1. Responsiveness was partially restored by overexpression of wild type type II TGFbeta receptors. Activation of MAPK pathways by recombinant TGFbeta1 appeared to be less perturbed than Smad-dependent signaling. Our results show that expression of TbetaRIIDeltak selectively in fibroblasts leads to paradoxical ligand-dependent activation of downstream signaling pathways and causes skin and lung fibrosis. As well as confirming the potential for nonsignaling receptors to regulate TGFbeta activity, these findings support a direct role for perturbed TGFbeta signaling in fibrosis and provide a novel genetically determined animal model of fibrotic disease.  相似文献   
1000.
A novel type of deubiquitinating enzyme   总被引:1,自引:0,他引:1  
A previous report from this laboratory described two novel proteins that have sequence similarity to A20, a negative regulator of NF-kappaB (Evans, P. C., Taylor, E. R., Coadwell, J., Heyninck, K., Beyaert, R., and Kilshaw, P. J. (2001) Biochem. J. 357, 617-623). One of these molecules, cellular zinc finger anti-NF-kappaB (Cezanne), a 100-kDa cytoplasmic protein, also suppressed NF-kappaB. Here we demonstrate that Cezanne is a novel deubiquitinating enzyme, distinct from the two known families of deubiquitinases, Types I and II. We show that Cezanne contains an N-terminal catalytic domain that belongs to the recently discovered ovarian tumor protein (OTU) superfamily, a group of proteins displaying structural similarity to cysteine proteases but having no previously described function. Recombinant Cezanne cleaved ubiquitin monomers from linear or branched synthetic ubiquitin chains and from ubiquitinated proteins. Mutation of a conserved cysteine residue in the catalytic site of the proteolytic domain caused Cezanne to co-precipitate polyubiquitinated cellular proteins. We also provide evidence for an additional ubiquitin binding site in the C-terminal part of the molecule. Our data provide the first demonstration of functional activity among OTU proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号