首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   20篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   9篇
  2019年   3篇
  2018年   13篇
  2017年   5篇
  2016年   12篇
  2015年   17篇
  2014年   21篇
  2013年   33篇
  2012年   40篇
  2011年   31篇
  2010年   16篇
  2009年   17篇
  2008年   22篇
  2007年   31篇
  2006年   22篇
  2005年   29篇
  2004年   20篇
  2003年   12篇
  2002年   13篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1963年   2篇
排序方式: 共有411条查询结果,搜索用时 265 毫秒
81.
4-Nitrophenyl glycosides of 2-, 3-, and 5-O-(E)-feruloyl- and 2- and 5-O-acetyl-alpha-L-arabinofuranosides and of 2-, 3-, and 4-O-(E)-feruloyl- and 2-, 3- and 4-O-acetyl-beta-D-xylopyranosides, compounds mimicking natural substrates, were used to investigate substrate and positional specificity of type-A, -B, and -C feruloyl esterases. All the feruloyl esterases behave as true feruloyl esterases showing negligible activity on sugar acetates. Type-A enzymes, represented by AnFaeA from Aspergillus niger and FoFaeII from Fusarium oxysporum, are specialized for deferuloylation of primary hydroxyl groups, with a very strong preference for hydrolyzing 5-O-feruloyl-alpha-L-arabinofuranoside. On the contrary, type-B and -C feruloyl esterases, represented by FoFaeI from F. oxysporum and TsFaeC from Talaromyces stipitatus, acted on almost all ferulates with exception of 4- and 3-O-feruloyl-beta-D-xylopyranoside. 5-O-Feruloyl-alpha-L-arabinofuranoside was the best substrate for both TsFaeC and FoFaeI, although catalytic efficiency of the latter enzyme toward 2-O-feruloyl-alpha-L-arabinofuranoside was comparable. In comparison with acetates, the corresponding ferulates served as poor substrates for the carbohydrate esterase family 1 feruloyl esterase from Aspergillus oryzae. The enzyme hydrolyzed all alpha-L-arabinofuranoside and beta-D-xylopyranoside acetates. It behaved as a non-specific acetyl esterase rather than a feruloyl esterase, with a preference for 2-O-acetyl-beta-D-xylopyranoside.  相似文献   
82.
DNA damage responses (DDR) invoke senescence or apoptosis depending on stimulus intensity and the degree of activation of the p53-p21(Cip1/Waf1) axis; but the functional impact of NF-κB signaling on these different outcomes in normal vs. human cancer cells remains poorly understood. We investigated the NF-κB-dependent effects and mechanism underlying reactive oxygen species (ROS)-mediated DDR outcomes of normal human lung fibroblasts (HDFs) and A549 human lung cancer epithelial cells. To activate DDR, ROS accumulation was induced by different doses of H(2)O(2). The effect of ROS induction caused a G2 or G2-M phase cell cycle arrest of both human cell types. However, ROS-mediated DDR eventually culminated in different end points with HDFs undergoing premature senescence and A549 cancer cells succumbing to apoptosis. NF-κB p65/RelA nuclear translocation and Ser536 phosphorylation were induced in response to H(2)O(2)-mediated ROS accumulation. Importantly, blocking the activities of canonical NF-κB subunits with an IκBα super-repressor or suppressing canonical NF-κB signaling by IKKβ knock-down accelerated HDF premature senescence by up-regulating the p53-p21(Cip1/Waf1) axis; but inhibiting the canonical NF-κB pathway exacerbated H(2)O(2)-induced A549 cell apoptosis. HDF premature aging occurred in conjunction with γ-H2AX chromatin deposition, senescence-associated heterochromatic foci and beta-galactosidase staining. p53 knock-down abrogated H(2)O(2)-induced premature senescence of vector control- and IκBαSR-expressing HDFs functionally linking canonical NF-κB-dependent control of p53 levels to ROS-induced HDF senescence. We conclude that IKKβ-driven canonical NF-κB signaling has different functional roles for the outcome of ROS responses in the contexts of normal vs. human tumor cells by respectively protecting them against DDR-dependent premature senescence and apoptosis.  相似文献   
83.
84.
The microbial degradation of lignocellulose biomass is not only an important biological process but is of increasing industrial significance in the bioenergy sector. The mechanism by which the plant cell wall, an insoluble composite structure, activates the extensive repertoire of microbial hydrolytic enzymes required to catalyze its degradation is poorly understood. Here we have used a transposon mutagenesis strategy to identify a genetic locus, consisting of two genes that modulate the expression of xylan side chain-degrading enzymes in the saprophytic bacterium Cellvibrio japonicus. Significantly, the locus encodes a two-component signaling system, designated AbfS (sensor histidine kinase) and AbfR (response regulator). The AbfR/S two-component system is required to activate the expression of the suite of enzymes that remove the numerous side chains from xylan, but not the xylanases that hydrolyze the beta1,4-linked xylose polymeric backbone of this polysaccharide. Studies on the recombinant sensor domain of AbfS (AbfS(SD)) showed that it bound to decorated xylans and arabinoxylo-oligosaccharides, but not to undecorated xylo-oligosaccharides or other plant structural polysaccharides/oligosaccharides. The crystal structure of AbfS(SD) was determined to a resolution of 2.6A(.) The overall fold of AbfS(SD) is that of a classical Per Arndt Sim domain with a central antiparallel four-stranded beta-sheet flanked by alpha-helices. Our data expand the number of molecules known to bind to the sensor domain of two-component histidine kinases to include complex carbohydrates. The biological rationale for a regulatory system that induces enzymes that remove the side chains of xylan, but not the hydrolases that cleave the backbone of the polysaccharide, is discussed.  相似文献   
85.
The ubiquitin–proteasome system is central to the regulation of cellular proteostasis. Nevertheless, the impact of in vivo proteasome dysfunction on the proteostasis networks and the aging processes remains poorly understood. We found that RNAi‐mediated knockdown of 20S proteasome subunits in Drosophila melanogaster resulted in larval lethality. We therefore studied the molecular effects of proteasome dysfunction in adult flies by developing a model of dose‐dependent pharmacological proteasome inhibition. Impaired proteasome function promoted several ‘old‐age’ phenotypes and markedly reduced flies' lifespan. In young somatic tissues and in gonads of all ages, loss of proteasome activity induced higher expression levels and assembly rates of proteasome subunits. Proteasome dysfunction was signaled to the proteostasis network by reactive oxygen species that originated from malfunctioning mitochondria and triggered an Nrf2‐dependent upregulation of the proteasome subunits. RNAi‐mediated Nrf2 knockdown reduced proteasome activities, flies' resistance to stress, as well as longevity. Conversely, inducible activation of Nrf2 in transgenic flies upregulated basal proteasome expression and activity independently of age and conferred resistance to proteotoxic stress. Interestingly, prolonged Nrf2 overexpression reduced longevity, indicating that excessive activation of the proteostasis pathways can be detrimental. Our in vivo studies add new knowledge on the proteotoxic stress‐related regulation of the proteostasis networks in higher metazoans. Proteasome dysfunction triggers the activation of an Nrf2‐dependent tissue‐ and age‐specific regulatory circuit aiming to adjust the cellular proteasome activity according to temporal and/or spatial proteolytic demands. Prolonged deregulation of this proteostasis circuit accelerates aging.  相似文献   
86.
Runx1 is highly expressed in chondroprogenitor and osteoprogenitor cells and in vitro experiments suggest that Runx1 is important in the early stages of osteoblast and chondrocyte differentiation. However, because Runx1 knockout mice are early embryonic lethal due to failure of hematopoiesis, the role of Runx1 in skeletogenesis remains unclear. We studied the role of Runx1 in skeletal development using a Runx1 reversible knockout mouse model. By crossing with Tie2-Cre deletor mice, Runx1 expression was selectively rescued in the endothelial and hematopoietic systems but not in the skeleton. Although Runx1Re/Re embryos survived until birth and had a generally normal skeleton, the development of mineralization in the sternum and some skull elements was significantly disrupted. In contrast to wild-type embryos, the sternum of E17.5 Runx1Re/Re embryos showed high levels of Sox-9 and collagen type II expression and lack of development of hypertrophic chondrocytes. In situ hybridization analysis demonstrated that, in contrast to the vertebrae and long bones, the sternum of wild-type embryos expresses high levels of Runx1, but not Runx2, the master regulator of skeletogenesis. Thus, although Runx1 is not essential for major skeletal development, it does play an essential role in the development of the sternum and some skull elements.  相似文献   
87.
88.
89.
Energy storage challenges have triggered growing interest in various battery technologies and electrocatalysis. As a particularly promising variety, the Li–O2 battery with an extremely high energy density is of great significance, offering tremendous opportunities to improve cell performance via understanding catalytic mechanisms and the exploration of new materials. Furthermore, focus on nonaqueous electrolyte‐based Li–O2 batteries has markedly intensified since there could be a higher probability of commercialization, compared to that of solid‐state or aqueous electrolytes. The recent advancements of the nonaqueous Li–O2 battery in terms of fundamental understanding and material challenges, including electrolyte stability, water effect, and noncarbon cathode materials are summarized in this review. Further, the current status of water impact on discharge products, possible mechanisms, and parasitic reactions in nonaqueous electrolytes are reviewed for the first time. The key challenges of noncarbon oxygen electrode materials, such as noble metals and metal oxides‐based cathodes, transition metals, transition metal compounds (carbides, oxides) based cathodes as well as noncarbon supported catalysts are discussed. This review concludes with a perspective on future research directions for nonaqueous Li–O2 batteries.  相似文献   
90.

Background

High levels of blood cholesterol are conventionally linked to an increased risk of developing cardiovascular disease (Grundy, 1986). Here we examine the molecular mode of action of natural products with known cholesterol-lowering activity, such as for example the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys.

Methods

Molecular Dynamics simulations are used to gain insight into the formation process of mixed micelles and, correspondingly, how active agents epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys could possibly interfere with it.

Results

Self-assembly of physiological micelles occurs on the order of 35–50?ns; most of the structural properties of mixed micelles are unaffected by epigallocatechin gallate or Ile-Ile-Ala-Glu-Lys which integrate into the micellar surface; the diffusive motion of constituting lipids palmitoyl-oleoyl-phosphatidylcholine and cholesterol is significantly down-regulated by both epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys;

Conclusions

The molecular mode of action of natural compounds epigallocatechin gallate and Ile-Ile-Ala-Glu-Lys is a significant down-regulation of the diffusive motion of micellar lipids.

General significance

Natural compounds like the green tea ingredient epigallocatechin gallate and a short pentapeptide, Ile-Ile-Ala-Glu-Lys, lead to a significant down-regulation of the diffusive motion of micellar lipids thereby modulating cholesterol absorption into physiological micelles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号