首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   19篇
  406篇
  2023年   1篇
  2022年   7篇
  2021年   11篇
  2020年   9篇
  2019年   3篇
  2018年   12篇
  2017年   4篇
  2016年   11篇
  2015年   18篇
  2014年   22篇
  2013年   33篇
  2012年   41篇
  2011年   30篇
  2010年   15篇
  2009年   17篇
  2008年   21篇
  2007年   31篇
  2006年   21篇
  2005年   29篇
  2004年   19篇
  2003年   12篇
  2002年   13篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1974年   1篇
  1963年   2篇
排序方式: 共有406条查询结果,搜索用时 15 毫秒
11.
12.
Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.  相似文献   
13.
Although the biological significance of proteoglycans (PGs) has previously been highlighted in multiple myeloma (MM), little is known about serglycin, which is a hematopoietic cell granule PG. In this study, we describe the expression and highly constitutive secretion of serglycin in several MM cell lines. Serglycin messenger RNA was detected in six MM cell lines. PGs were purified from conditioned medium of four MM cell lines, and serglycin substituted with 4-sulfated chondroitin sulfate was identified as the predominant PG. Flow cytometry and confocal microscopy showed that serglycin was also present intracellularly and on the cell surface, and attachment to the cell surface was at least in part dependent on intact glycosaminoglycan side chains. Immunohistochemical staining of bone marrow biopsies showed the presence of serglycin both in benign and malignant plasma cells. Immunoblotting in bone marrow aspirates from a limited number of patients with newly diagnosed MM revealed highly increased levels of serglycin in 30% of the cases. Serglycin isolated from myeloma plasma cells was found to influence the bone mineralization process through inhibition of the crystal growth rate of hydroxyapatite. This rate reduction was attributed to adsorption and further blocking of the active growth sites on the crystal surface. The apparent order of the crystallization reaction was found to be n=2, suggesting a surface diffusion-controlled spiral growth mechanism. Our findings suggest that serglycin release is a constitutive process, which may be of fundamental biological importance in the study of MM.  相似文献   
14.
The third domain of Japanese quail ovomucoid, a Kazal type inhibitor, has been crystallized and its crystal structure determined at 2.5 Å resolution using multiple isomorphous replacement techniques. The asymmetric unit contains four molecules. In the crystal the molecules are arranged in two slightly different octamers with approximate D4 symmetry. The molecules are held together mainly by interactions of the N-terminal residues, which form a novel secondary structural element, a β-channel.The molecule is globular with approximate dimensions 35 Å × 27 Å × 19 Å. The secondary structural elements are a double-stranded anti-parallel β-sheet of residues Pro22 to Gly32 and an α-helix from Asn33 to Ser44. The reactive site Lys18-Asp19 is located in an exposed loop. It is close to Asn33 at the N terminus of the helical segment. The polypeptide chain folding of ovomucoid bears some resemblance to other inhibitors in the existence of an anti-parallel double strand following the reactive site loop.  相似文献   
15.
Apoptosis represents a physiological form of cell death, the perturbation of which may contribute to the development of several diseases connected with accumulation of unwanted cells or excessive cell loss. We have previously shown that the continuous presence of low concentrations of H2O2 (generated by the action of glucose oxidase) was able to inhibit caspase-mediated apoptosis in Jurkat cells. The main purpose of the present study was to elucidate the exact molecular mechanism(s) underlying this inhibitory action of H2O2. The results presented show that events like outer mitochondrial membrane permeabilization, release of cytochrome c from mitochondria, oligomerization of Apaf-1, and recruitment of procaspase-9 to apoptosomes were taking place normally, but further advancement toward activation of the execution caspases was interrupted when H2O2 was present during the apoptotic process. From the results presented in this work, it emerges that the inhibition of procaspase-9 autoactivation was probably due to the reversible oxidation of sensitive cysteine residues in this molecule. Remarkably, caspase-9 activation and the ensuing caspase cascade proceeded normally in the presence of H2O2 under conditions of iron deprivation, indicating that the inhibition of procaspase-9 activation was an iron-dependent process. Collectively, these results highlighted the potential role of available intracellular iron ions in signaling mechanisms related to apoptotic cell death.  相似文献   
16.

Background

Understanding the mechanisms involved in climacteric fruit ripening is key to improve fruit harvest quality and postharvest performance. Kiwifruit (Actinidia deliciosa cv. ‘Hayward’) ripening involves a series of metabolic changes regulated by ethylene. Although 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) or ozone (O3) exposure suppresses ethylene-related kiwifruit ripening, how these molecules interact during ripening is unknown.

Results

Harvested ‘Hayward’ kiwifruits were treated with 1-MCP and exposed to ethylene-free cold storage (0?°C, RH 95%) with ambient atmosphere (control) or atmosphere enriched with O3 (0.3?μL?L??1) for up to 6?months. Their subsequent ripening performance at 20?°C (90% RH) was characterized. Treatment with either 1-MCP or O3 inhibited endogenous ethylene biosynthesis and delayed fruit ripening at 20?°C. 1-MCP and O3 in combination severely inhibited kiwifruit ripening, significantly extending fruit storage potential. To characterize ethylene sensitivity of kiwifruit following 1-MCP and O3 treatments, fruit were exposed to exogenous ethylene (100?μL?L??1, 24?h) upon transfer to 20?°C following 4 and 6?months of cold storage. Exogenous ethylene treatment restored ethylene biosynthesis in fruit previously exposed in an O3-enriched atmosphere. Comparative proteomics analysis showed separate kiwifruit ripening responses, unraveled common 1-MCP- and O3-dependent metabolic pathways and identified specific proteins associated with these different ripening behaviors. Protein components that were differentially expressed following exogenous ethylene exposure after 1-MCP or O3 treatment were identified and their protein-protein interaction networks were determined. The expression of several kiwifruit ripening related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1), ethylene receptor (ETR1), lipoxygenase (LOX1), geranylgeranyl diphosphate synthase (GGP1), and expansin (EXP2), was strongly affected by O3, 1-MCP, their combination, and exogenously applied ethylene.

Conclusions

Our findings suggest that the combination of 1-MCP and O3 functions as a robust repressive modulator of kiwifruit ripening and provide new insight into the metabolic events underlying ethylene-induced and ethylene-independent ripening outcomes.
  相似文献   
17.
The groundbreaking technologies of induced pluripotency and lineage conversion have generated a genuine opportunity to address fundamental aspects of the diseases that affect the nervous system. These approaches have granted us unrestricted access to the brain and spinal cord of patients and have allowed for the study of disease in the context of human cells, expressing physiological levels of proteins and under each patient's unique genetic constellation. Along with this unprecedented opportunity have come significant challenges, particularly in relation to patient variability, experimental design and data interpretation. Nevertheless, significant progress has been achieved over the past few years both in our ability to create the various neural subtypes that comprise the nervous system and in our efforts to develop cellular models of disease that recapitulate clinical findings identified in patients. In this Review, we present tables listing the various human neural cell types that can be generated and the neurological disease modeling studies that have been reported, describe the current state of the field, highlight important breakthroughs and discuss the next steps and future challenges.  相似文献   
18.
5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo. Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive) compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition. Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma.  相似文献   
19.
Polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0582-8) contains supplementary material, which is available to authorized users.  相似文献   
20.
A sperm penetrates an egg by extending a long, actin-filled tube known as the acrosomal process. This simple example of biomotility is one of the most dramatic. In Thyone, a 90 m process can extend in less than 10 s. Experiments have shown that actin monomers stored in the base of the sperm are transported to the growing tip of the acrosomal process where they add to the ends of the existing filaments.The force that drives the elongation of the acrosomal process has not yet been identified although the most frequently discussed candidate is the actin polymerization reaction. Developing what we believe are realistic moving boundary models of diffusion limited actin fiber polymerization, we show that actin filament growth occurs too slowly to drive acrosomal elongation. We thus believe that other forces, such as osmotically driven water flow, must play an important role in causing the elongation. We conjecture that actin polymerization merely follows to give the appropriate shape to the growing structure and to stabilize the structure once water flow ceases.Work partially supported by the United States Department of Energy  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号