首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   857篇
  免费   35篇
  892篇
  2023年   2篇
  2022年   12篇
  2021年   15篇
  2020年   14篇
  2019年   6篇
  2018年   16篇
  2017年   8篇
  2016年   21篇
  2015年   35篇
  2014年   45篇
  2013年   50篇
  2012年   77篇
  2011年   62篇
  2010年   27篇
  2009年   38篇
  2008年   49篇
  2007年   58篇
  2006年   43篇
  2005年   52篇
  2004年   41篇
  2003年   27篇
  2002年   28篇
  2001年   16篇
  2000年   9篇
  1999年   16篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   6篇
  1991年   9篇
  1990年   11篇
  1989年   11篇
  1988年   8篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1983年   5篇
  1981年   4篇
  1978年   2篇
  1973年   2篇
  1969年   3篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1963年   2篇
  1959年   1篇
排序方式: 共有892条查询结果,搜索用时 15 毫秒
91.
Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin‐directed AAA‐ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo‐Lysosomal Damage Response. Together, they act downstream of K63‐linked ubiquitination and p62 recruitment, and selectively remove K48‐linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases.  相似文献   
92.
Twenty males ran either on a level treadmill (nonmuscle-damaging condition) or on a downhill treadmill (muscle-damaging condition). Blood and urine samples were collected before and after exercise (immediately after, 1h, 4h, 24h, 48h, and 96h). The following assays were performed: F(2)-isoprostanes in urine, protein carbonyls in plasma, glutathione, superoxide dismutase, glutathione peroxidase, and catalase in erythrocytes. The main finding was that monophasic redox responses were detected after nonmuscle-damaging exercise compared to the biphasic responses detected after muscle-damaging exercise. Based on these findings, muscle-damaging exercise may be a more appropriate experimental model to induce physiological oxidative stress.  相似文献   
93.
Steroidogenesis begins with the metabolism of cholesterol to pregnenolone by the inner mitochondrial membrane cytochrome P450 side-chain cleavage (P450scc) enzyme. The rate of steroid formation, however, depends on the rate of (i) cholesterol transport from intracellular stores to the inner mitochondrial membrane and (ii) loading of P450scc with cholesterol. We demonstrated that a key element in the regulation of cholesterol transport is the mitochondrial peripheral-type benzodiazepine receptor (PBR) and that the presence of the polypeptide diazepam binding inhibitor (DBI) was vital for steroidogenesis. We also showed that DBI, as the endogenous PBR ligand, stimulates cholesterol transport. In addition, DBI directly promotes loading of cholesterol to P450scc. We review herein our studies on the structure, function, topography and hormonal regulation of PBR and DBI in steroidogenic cells. Based on these data we propose a model where the interaction of DBI with PBR, at the outer/inner membrane contact sites, is the signal transducer of hormone-stimulated and constitutive steroidogenesis at the mitochondrial level. Hormone-induced changes in PBR microenvironment/structure regulate the affinity of the receptor. PBR ligand binding to a higher affinity receptor results in increased cholesterol transport. In addition, hormone-induced release (processing?) of a 30,000 MW DBI-immunoreactive protein from the inner mitochondrial membrane may result to the intramitochondrial production of DBI which directly stimulates loading of P450scc with cholesterol. Thus, in vivo, hormonal activation of these two mechanisms results in efficient cholesterol delivery and utilization and thus high levels of steroid synthesis.  相似文献   
94.
Previous studies in MA-10 tumor Leydig cells demonstrated that disruption of the mitochondrial electron-transport chain (ETC), membrane potential (ΔΨ(m)), or ATP synthesis independently inhibited steroidogenesis. In contrast, studies of primary Leydig cells indicated that the ETC, ΔΨ(m), and ATP synthesis cooperatively affected steroidogenesis. These results suggest significant differences between the two systems and call into question the extent to which results from tumor Leydig cells relate to primary cells. Thus, to further understand the similarities and differences between the two systems as well as the impact of ATP disruption on steroidogenesis, we performed comparative studies of MA-10 and primary Leydig cells under similar conditions of mitochondrial disruption. We show that mitochondrial ATP synthesis is critical for steroidogenesis in both primary and tumor Leydig cells. However, in striking contrast to primary cells, perturbation of ΔΨ(m) in MA-10 cells did not substantially decrease cellular ATP content, a perplexing finding because ΔΨ(m) powers the mitochondrial ATP synthase. Further studies revealed that a significant proportion of cellular ATP in MA-10 cells derives from glycolysis. In contrast, primary cells appear to be almost completely dependent on mitochondrial respiration for their energy provision. Inhibitor studies also suggested that the MA-10 ETC is impaired. This work underscores the importance of mitochondrial ATP for hormone-stimulated steroid production in both MA-10 and primary Leydig cells while indicating that caution must be exercised in extrapolating data from tumor cells to primary tissue.  相似文献   
95.
Crabs of the family Hymenosomatidae are common in coastal and shelf regions throughout much of the southern hemisphere. One of the genera in the family, Hymenosoma, is represented in Africa and the South Pacific (Australia and New Zealand). This distribution can be explained either by vicariance (presence of the genus on the Gondwanan supercontinent and divergence following its break-up) or more recent transoceanic dispersal from one region to the other. We tested these hypotheses by reconstructing phylogenetic relationships among the seven presently-accepted species in the genus, as well as examining their placement among other hymenosomatid crabs, using sequence data from two nuclear markers (Adenine Nucleotide Transporter [ANT] exon 2 and 18S rDNA) and three mitochondrial markers (COI, 12S and 16S rDNA). The five southern African representatives of the genus were recovered as a monophyletic lineage, and another southern African species, Neorhynchoplax bovis, was identified as their sister taxon. The two species of Hymenosoma from the South Pacific neither clustered with their African congeners, nor with each other, and should therefore both be placed into different genera. Molecular dating supports a post-Gondwanan origin of the Hymenosomatidae. While long-distance dispersal cannot be ruled out to explain the presence of the family Hymenosomatidae on the former Gondwanan land-masses and beyond, the evolutionary history of the African species of Hymenosoma indicates that a third means of speciation may be important in this group: gradual along-coast dispersal from tropical towards temperate regions, with range expansions into formerly inhospitable habitat during warm climatic phases, followed by adaptation and speciation during subsequent cooler phases.  相似文献   
96.
Excitation-contraction coupling in skeletal muscle involves conformational coupling between the dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) at junctions between the plasma membrane and sarcoplasmic reticulum. In an attempt to find which regions of these proteins are in close proximity to one another, we have constructed a tandem of cyan and yellow fluorescent proteins (CFP and YFP, respectively) linked by a 23-residue spacer, and measured the fluorescence resonance energy transfer (FRET) of the tandem either in free solution or after attachment to sites of the alpha1S and beta1a subunits of the DHPR. For all of the sites examined, attachment of the CFP-YFP tandem did not impair function of the DHPR as a Ca2+ channel or voltage sensor for excitation-contraction coupling. The free tandem displayed a 27.5% FRET efficiency, which decreased significantly after attachment to the DHPR subunits. At several sites examined for both alpha1S (N-terminal, proximal II-III loop of a two fragment construct) and beta1a (C-terminal), the FRET efficiency was similar after expression in either dysgenic (alpha1S-null) or dyspedic (RyR1-null) myotubes. However, compared with dysgenic myotubes, the FRET efficiency in dyspedic myotubes increased from 9.9 to 16.7% for CFP-YFP attached to the N-terminal of beta1a, and from 9.5 to 16.8% for CFP-YFP at the C-terminal of alpha1S. Thus, the tandem reporter suggests that the C terminus of alpha1S and the N terminus of beta1a may be in close proximity to the ryanodine receptor.  相似文献   
97.
DNA damage responses (DDR) invoke senescence or apoptosis depending on stimulus intensity and the degree of activation of the p53-p21(Cip1/Waf1) axis; but the functional impact of NF-κB signaling on these different outcomes in normal vs. human cancer cells remains poorly understood. We investigated the NF-κB-dependent effects and mechanism underlying reactive oxygen species (ROS)-mediated DDR outcomes of normal human lung fibroblasts (HDFs) and A549 human lung cancer epithelial cells. To activate DDR, ROS accumulation was induced by different doses of H(2)O(2). The effect of ROS induction caused a G2 or G2-M phase cell cycle arrest of both human cell types. However, ROS-mediated DDR eventually culminated in different end points with HDFs undergoing premature senescence and A549 cancer cells succumbing to apoptosis. NF-κB p65/RelA nuclear translocation and Ser536 phosphorylation were induced in response to H(2)O(2)-mediated ROS accumulation. Importantly, blocking the activities of canonical NF-κB subunits with an IκBα super-repressor or suppressing canonical NF-κB signaling by IKKβ knock-down accelerated HDF premature senescence by up-regulating the p53-p21(Cip1/Waf1) axis; but inhibiting the canonical NF-κB pathway exacerbated H(2)O(2)-induced A549 cell apoptosis. HDF premature aging occurred in conjunction with γ-H2AX chromatin deposition, senescence-associated heterochromatic foci and beta-galactosidase staining. p53 knock-down abrogated H(2)O(2)-induced premature senescence of vector control- and IκBαSR-expressing HDFs functionally linking canonical NF-κB-dependent control of p53 levels to ROS-induced HDF senescence. We conclude that IKKβ-driven canonical NF-κB signaling has different functional roles for the outcome of ROS responses in the contexts of normal vs. human tumor cells by respectively protecting them against DDR-dependent premature senescence and apoptosis.  相似文献   
98.
Rhagoletis cerasi (Diptera: Tephritidae) is a major pest of sweet and sour cherries in Europe and parts of Asia. Despite its economic significance, there is a lack of studies on the genetic structure of R. cerasi populations. Elucidating the genetic structure of insects of economic importance is crucial for developing phenological‐predictive models and environmental friendly control methods. All natural populations of R. cerasi have been found to harbor the endosymbiont Wolbachia pipientis, which widely affects multiple biological traits contributing to the evolution of its hosts, and has been suggested as a tool for the biological control of insect pests and disease vectors. In the current study, the analysis of 18 R. cerasi populations collected in Greece, Germany, and Russia using 13 microsatellite markers revealed structuring of R. cerasi natural populations, even at close geographic range. We also analyzed the Wolbachia infection status of these populations using 16S rRNA‐, MLST‐ and wsp‐based approaches. All 244 individuals screened were positive for Wolbachia. Our results suggest the fixation of the wCer1 strain in Greece while wCer2, wCer4, wCer5, and probably other uncharacterized strains were also detected in multiply infected individuals. The role of Wolbachia and its potential extended phenotypes needs a thorough investigation in R. cerasi. Our data suggest an involvement of this symbiont in the observed restriction in the gene flow in addition to a number of different ecological factors.  相似文献   
99.
Intracellular distribution of DNA methyltransferase during the cell cycle   总被引:2,自引:0,他引:2  
The intracellular distribution of DNA methyltransferase has been analyzed in synchronously proliferating human cells. The localization of DNA methyltransferase was determined immunocytochemically using monoclonal antibodies directed against this enzyme. DNA methyltransferase was found to accumulate predominantly in nuclei with weak cytoplasmic staining. The DNA methyltransferase antigen was absent in early G1 phase, appeared in late G1 prior to the onset of DNA synthesis and persisted throughout S and G2 phases of the cell cycle. Mitotic cells showed a particularly strong staining intensity. These results show that DNA methyltransferase levels fluctuate during the cell cycle. This has possible implications on the stability of the DNA methylation pattern.  相似文献   
100.
The precise mechanism by which the hormone-induced minimal cAMP levels act at the mitochondria to activate cholesterol transport and steroid synthesis is unknown. We propose that this mechanism involves a macromolecular signaling complex where a newly identified peripheral-type benzodiazepine receptor (PBR)-associated protein (PAP7) binds the regulatory subunit RIα of the cAMP-dependent protein kinase A (PKA), thus allowing for local efficient catalytic activation and phosphorylation of the substrate steroidogenesis acute regulatory protein (StAR), leading to cholesterol transfer from the low affinity StAR to the high affinity PBR cholesterol binding protein. The mouse and human PAP7 proteins were cloned, their genomic organization and chromosomal localization characterized, their tissue distribution evaluated and subcellular localization defined. PAP7 is highly expressed in steroidogenic tissues, where it follows the pattern of PKA-RIα expression and data from a human adrenal disease suggest that it participates in PKA-RIα-mediated tumorigenesis and hormone-independent hypercortisolism. PAP7 is localized in the Golgi and mitochondria and inhibition of PAP7 expression results in reduced hormone-induced cholesterol transport into mitochondria and decreased steroid formation. Taken together, these data suggest that PAP7 functions as an A-kinase anchoring protein (AKAP) critical in the cAMP-dependent steroid formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号