首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   34篇
  626篇
  2023年   1篇
  2022年   8篇
  2021年   15篇
  2020年   11篇
  2019年   4篇
  2018年   14篇
  2017年   7篇
  2016年   26篇
  2015年   20篇
  2014年   30篇
  2013年   48篇
  2012年   49篇
  2011年   44篇
  2010年   25篇
  2009年   22篇
  2008年   28篇
  2007年   35篇
  2006年   28篇
  2005年   37篇
  2004年   27篇
  2003年   18篇
  2002年   23篇
  2001年   10篇
  2000年   16篇
  1999年   11篇
  1998年   14篇
  1997年   2篇
  1996年   4篇
  1995年   8篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1983年   2篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1963年   2篇
排序方式: 共有626条查询结果,搜索用时 15 毫秒
1.

Background  

Ethidium homodimer is a cell-membrane impermeant nuclear fluorochrome that has been widely used to identify necrotic cells in culture. Here, we describe a novel technique for evaluating necrosis of epithelial cells in the proximal tubule that involves perfusing ethidium homodimer through the intact rat kidney. As a positive control for inducing necrosis, rats were treated with 3.5, 1.75, 0.87 and 0.43 mg/kg mercuric chloride (Hg2+, intraperitoneal), treatments which have previously been shown to rapidly cause dose-dependent necrosis of the proximal tubule. Twenty-four h after the administration of Hg2+, ethidium homodimer (5 μM) was perfused through the intact left kidney while the animal was anesthetized. The kidney was then removed, placed in embedding medium, frozen and cryosectioned at a thickness of 5 μm. Sections were permeabilized with -20°C methanol and then stained with 4',6-diamidino-2-phenylindole (DAPI) to label total nuclei. Total cell number was determined from the DAPI staining in random microscopic fields and the number of necrotic cells in the same field was determined by ethidium homodimer labeling.  相似文献   
2.
Direct DNA transfer methods based on particle bombardment have revolutionized plant genetic engineering. Major agronomic crops previously considered recalcitrant to gene transfer have been engineered using variations of this technology. In many cases variety-independent and efficient transformation methods have been developed enabling application of molecular biology techniques to crop improvement. The focus of this article is the development and performance of electric discharge particle bombardment (ACCELL™) technology. Unique advantages of this methodology compared to alternative propulsion technologies are discussed in terms of the range of species and genotypes that have been engineered, and the high transformation frequencies for major agronomic crops that enabled the technology to move from the R&D phase to commercialization. Creation of transgenic soybeans, cotton, and rice will be used as examples to illustrate the development of variety-independent and efficient gene transfer methods for most of the major agronomic crops. To our knowledge, no other gene transfer method based on particle bombardment has resulted in variety-independent and practical generation of large numbers of independently-derived crop plants. ACCELL™ technology is currently being utilized for the routine transfer of valuable genes into elite germplasm of soybean, cotton, bean, rice, corn, peanut and woody species.  相似文献   
3.
4.
The microbial degradation of lignocellulose biomass is not only an important biological process but is of increasing industrial significance in the bioenergy sector. The mechanism by which the plant cell wall, an insoluble composite structure, activates the extensive repertoire of microbial hydrolytic enzymes required to catalyze its degradation is poorly understood. Here we have used a transposon mutagenesis strategy to identify a genetic locus, consisting of two genes that modulate the expression of xylan side chain-degrading enzymes in the saprophytic bacterium Cellvibrio japonicus. Significantly, the locus encodes a two-component signaling system, designated AbfS (sensor histidine kinase) and AbfR (response regulator). The AbfR/S two-component system is required to activate the expression of the suite of enzymes that remove the numerous side chains from xylan, but not the xylanases that hydrolyze the beta1,4-linked xylose polymeric backbone of this polysaccharide. Studies on the recombinant sensor domain of AbfS (AbfS(SD)) showed that it bound to decorated xylans and arabinoxylo-oligosaccharides, but not to undecorated xylo-oligosaccharides or other plant structural polysaccharides/oligosaccharides. The crystal structure of AbfS(SD) was determined to a resolution of 2.6A(.) The overall fold of AbfS(SD) is that of a classical Per Arndt Sim domain with a central antiparallel four-stranded beta-sheet flanked by alpha-helices. Our data expand the number of molecules known to bind to the sensor domain of two-component histidine kinases to include complex carbohydrates. The biological rationale for a regulatory system that induces enzymes that remove the side chains of xylan, but not the hydrolases that cleave the backbone of the polysaccharide, is discussed.  相似文献   
5.
6.
The ubiquitin–proteasome system is central to the regulation of cellular proteostasis. Nevertheless, the impact of in vivo proteasome dysfunction on the proteostasis networks and the aging processes remains poorly understood. We found that RNAi‐mediated knockdown of 20S proteasome subunits in Drosophila melanogaster resulted in larval lethality. We therefore studied the molecular effects of proteasome dysfunction in adult flies by developing a model of dose‐dependent pharmacological proteasome inhibition. Impaired proteasome function promoted several ‘old‐age’ phenotypes and markedly reduced flies' lifespan. In young somatic tissues and in gonads of all ages, loss of proteasome activity induced higher expression levels and assembly rates of proteasome subunits. Proteasome dysfunction was signaled to the proteostasis network by reactive oxygen species that originated from malfunctioning mitochondria and triggered an Nrf2‐dependent upregulation of the proteasome subunits. RNAi‐mediated Nrf2 knockdown reduced proteasome activities, flies' resistance to stress, as well as longevity. Conversely, inducible activation of Nrf2 in transgenic flies upregulated basal proteasome expression and activity independently of age and conferred resistance to proteotoxic stress. Interestingly, prolonged Nrf2 overexpression reduced longevity, indicating that excessive activation of the proteostasis pathways can be detrimental. Our in vivo studies add new knowledge on the proteotoxic stress‐related regulation of the proteostasis networks in higher metazoans. Proteasome dysfunction triggers the activation of an Nrf2‐dependent tissue‐ and age‐specific regulatory circuit aiming to adjust the cellular proteasome activity according to temporal and/or spatial proteolytic demands. Prolonged deregulation of this proteostasis circuit accelerates aging.  相似文献   
7.
Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the ‘birthday problem’. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10−6 s/s/y) and Campylobacter jejuni (3.4 x 10−6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame–analogous to a shared birthday–and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.  相似文献   
8.
The role of clusterin/apolipoprotein J (Clu/ApoJ) and Bcl-2 on C(2)-ceramide-induced apoptosis of embryonic human diploid fibroblasts, MRC-5 and immortalized adult skin keratinocytes, HaCaT was investigated. C(2)-ceramide-induced apoptosis of HaCaT in a time- and dose-dependent manner, while in MRC-5 only at higher concentrations. There was a dose-dependent accumulation of Clu/ApoJ and downregulation of Bcl-2 which correlated with C(2)-ceramide-induced apoptosis of MRC-5. While overexpression of Bcl-2 suppressed C(2)-ceramide-mediated apoptosis in both cell types, Clu/ApoJ failed to do so, accessed by morphological changes, DNA fragmentation and PARP cleavage. There was no change in the expression of endogenous p53 or p21(Waf1/Cip1) upon C(2)-ceramide treatment of MRC-5. However, mutant p53(143ala) increased the sensitivity of MRC-5 to C(2)-ceramide-induced apoptosis by markedly downregulating Bcl-2, pointing to a role for p53. These results suggested that whereas downregulation of Bcl-2 may be a crucial factor involved in C(2)-ceramide-induced apoptosis, accumulation of Clu/ApoJ may be a signal of stress response. Moreover, the ceramide-activated apoptotic pathway may be regulated by p53.  相似文献   
9.
A segmental tibial defect model in a large animal can provide a basis for testing materials and techniques for use in nonunions and severe trauma. This study reports the rationale behind establishing such a model and its design and conclusions. After ethics approval of the study, aged ewes (older than 5 y; n = 12) were enrolled. A 5-cm mid diaphyseal osteoperiosteal defect was made in the left tibia and was stabilized by using an 8-mm stainless-steel cross-locked intramedullary nail. Sheep were euthanized at 12 wk after surgery and evaluated by using radiography, microCT, and soft-tissue histology techniques. Radiology confirmed a lack of hard tissue callus bridging across the defect. Volumetric analysis based on microCT showed bone growth across the 16.5-cm3 defect of 1.82 ± 0.94 cm3. Histologic sections of the bridging tissues revealed callus originating from both the periosteal and endosteal surfaces, with fibrous tissue completing the bridging in all instances. Immunohistochemistry was used to evaluate the quality of the healing response. Clinical, radiographic, and histologic union was not achieved by 12 wk. This model may be effective for the investigation of surgical techniques and healing adjuncts for nonunion cases, where severe traumatic injury has led to significant bone loss.Abbreviations: BMP2, bone morphogenic protein 2; CATK, cathepsin K; VEGF, vascular endothelial growth factorThe human tibia is the most frequently broken long bone, often with significant bone loss.4 Segmental tibial defects can occur as a result of large tumor removal, trauma such as motor vehicle accidents, and more recently, blast injuries as seen with the escalating number of global conflicts. Treatment of these large bone and surrounding soft tissue defects is an ongoing, costly, and challenging clinical problem; no surgical technique has currently achieved preeminence.4 The general consensus on factors that affect healing include concomitant disease, age, and degree of trauma.5 When the first 2 factors, which are patient-related, are removed from the equation, healing is influenced by the size, anatomic location, and soft-tissue coverage of the defect. The ability to study these situations in a well-controlled, robust, and reproducible preclinical model would be advantageous to help establish effective surgical techniques and evaluate implants and materials.A literature review revealed that many ovine models for bone defects have been used, but all have limitations6,12,14,15,20,21,24,25,27,31,37,39,40 (Figure 1). Variations in protocols, such as age of the animals, size of the defect, and the bone and stabilization techniques used, limit meaningful comparison between studies.33,34 Although some studies have investigated material performance in the healing of defects, they did not rigorously quantify control defects,17,20 and others used no controls at all.39 There is often no explanation regarding the use of a particular defect size, leading to the question of whether the defect size was critical.24 The choice of bone used has been also varied; the femur,15 tibia,37 and metatarsus40 have all been studied. A noncritical-size defect implies that healing would eventually occur without the presence of any graft materials. One study,12 for example, used a 3-cm defect at an average of 1.8 times the diameter of the tibias in question and found that empty controls achieved as much as 26% of the stiffness of an intact tibia after 12 wk. Stabilization methods include plating,21,40 external fixtures,20 intramedullary nails,6,16 and a combination of intramedullary nails and plating.37Open in a separate windowFigure 1.A limited summary of the many studies where a segmental tibial has been used with their references.The criteria used in the present study for a critical-size segmental tibial defect model were based on the following factors. The ovine tibia closely resembles that of the human tibia in terms of size, shape, and physical properties and is commonly used when studying human orthopedic diseases.26,34 Intramedullary nailing has become the most commonly used method of tibial fracture fixation in human orthopedic surgery.8,22 An 8-mm intramedullary nail is commonly used in the treatment of human fractures, further confirming the size similarity between the ovine and human tibiae.19The aim of this study was to establish and characterize a preclinical ovine 5-cm osteoperiosteal critical-size tibial segmental defect model in mature sheep. The endpoints included those commonly used clinically, such as radiography and microCT. Histology to investigate the degree of healing and immunohistochemistry to characterize the healing process were included to complete the evaluation process.  相似文献   
10.
[NEt4]3[Fe6M2S8(SEt)9] (M = Mo or W) compounds are isomorphous and contain molybdenum and tungsten atoms in an essentially identical environment. These complexes undergo an irreversible one-electron oxidation at −0.46 V (Mo) and −0.51 V (W) and two one-electron reductions at −1.56 and −1.76 V (Mo) and −1.52 and −1.84 V (W), in DMSO solution versus (0.1 M). The only distinction between the behavior of these molybdenum and tungsten complexes identified thus far is that, for the former the reductions are reversible whereas for the latter they are irreversible. This difference may be relevant to the low activity found for nitrogenases reconstituted with tungsten in place of molybdenum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号