首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   339篇
  免费   18篇
  2023年   1篇
  2022年   2篇
  2021年   11篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   6篇
  2016年   11篇
  2015年   16篇
  2014年   21篇
  2013年   27篇
  2012年   28篇
  2011年   37篇
  2010年   19篇
  2009年   11篇
  2008年   20篇
  2007年   16篇
  2006年   26篇
  2005年   17篇
  2004年   18篇
  2003年   24篇
  2002年   6篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有357条查询结果,搜索用时 93 毫秒
91.
A series of glucopyranosylidene-spiro-isoxazolines was prepared through regio- and stereoselective [3+2]-cycloaddition between the methylene acetylated exo-glucal and aromatic nitrile oxides. The deprotected cycloadducts were evaluated as inhibitors of muscle glycogen phosphorylase b. The carbohydrate-based family of five inhibitors displays Ki values ranging from 0.63 to 92.5 μM. The X-ray structures of the enzyme–ligand complexes show that the inhibitors bind preferentially at the catalytic site of the enzyme retaining the less active T-state conformation. Docking calculations with GLIDE in extra-precision (XP) mode yielded excellent agreement with experiment, as judged by comparison of the predicted binding modes of the five ligands with the crystallographic conformations and the good correlation between the docking scores and the experimental free binding energies. Use of docking constraints on the well-defined positions of the glucopyranose moiety in the catalytic site and redocking of GLIDE-XP poses using electrostatic potential fit-determined ligand partial charges in quantum polarized ligand docking (QPLD) produced the best results in this regard.  相似文献   
92.
N-acetyl-beta-D-glucopyranosylamine (NAG) is a potent inhibitor (Ki=32 microM) of glycogen phosphorylase b (GPb), and has been employed as a lead compound for the structure-based design of new analogues, in an effort to utilize its potential as a hypoglycaemic agent. Replacement of the acetamido group by azidoacetamido group resulted in an inhibitor, N-azidoacetyl-beta-D-glucopyranosylamine (azido-NAG), with a Ki value of 48.7 microM, in the direction of glycogen synthesis. In order to elucidate the mechanism of inhibition, we determined the ligand structure in complex with GPb at 2.03 A resolution, and the structure of the fully acetylated derivative in the free form. The molecular packing of the latter is stabilized by a number of bifurcated hydrogen bonds of which the one involving a bifurcated C-H...N...H-C type hydrogen bonding is rather unique in organic azides. Azido-NAG can be accommodated in the catalytic site of T-state GPb at approximately the same position as that of NAG and stabilizes the T-state conformation of the 280 s loop by making several favourable contacts to residues of this loop. The difference observed in the Ki values of the two analogues can be interpreted in terms of desolvation effects, subtle structural changes of protein residues and changes in water structure.  相似文献   
93.
Glycogen phosphorylase (GP) is a promising target for the treatment of type 2 diabetes. In the process of structure based drug design for GP, a group of 15 aromatic aldehyde 4-(β-d-glucopyranosyl)thiosemicarbazones have been synthesized and evaluated as inhibitors of rabbit muscle glycogen phosphorylase b (GPb) by kinetic studies. These compounds are competitive inhibitors of GPb with respect to α-d-glucose-1-phosphate with IC50 values ranging from 5.7 to 524.3 μM. In order to elucidate the structural basis of their inhibition, the crystal structures of these compounds in complex with GPb at 1.95–2.23 Å resolution were determined. The complex structures reveal that the inhibitors are accommodated at the catalytic site with the glucopyranosyl moiety at approximately the same position as α-d-glucose and stabilize the T conformation of the 280s loop. The thiosemicarbazone part of the studied glucosyl thiosemicarbazones possess a moiety derived from substituted benzaldehydes with NO2, F, Cl, Br, OH, OMe, CF3, or Me at the ortho-, meta- or para-position of the aromatic ring as well as a moiety derived from 4-pyridinecarboxaldehyde. These fit tightly into the β-pocket, a side channel from the catalytic site with no access to the bulk solvent. The differences in their inhibitory potency can be interpreted in terms of variations in the interactions of the aldehyde-derived moiety with protein residues in the β-pocket. In addition, 14 out of the 15 studied inhibitors were found bound at the new allosteric site of the enzyme.  相似文献   
94.

Background  

The prostate gland of rabbits produces numerous granules, which are specifically implicated in the inhibition of sperm capacitation during the first hours after mating. These granules are rich in vitamin E, but their role in the antioxidant protection of rabbit sperm has not been studied.  相似文献   
95.

Background

Insecticide-based methods represent the most effective means of blocking the transmission of vector borne diseases. However, insecticide resistance poses a serious threat and there is a need for tools, such as diagnostic tests for resistance detection, that will improve the sustainability of control interventions. The development of such tools for metabolism-based resistance in mosquito vectors lags behind those for target site resistance mutations.

Methodology/Principal Findings

We have developed and validated a simple colorimetric assay for the detection of Epsilon class Glutathione transferases (GST)-based DDT resistance in mosquito species, such as Aedes aegypti, the major vector of dengue and yellow fever worldwide. The colorimetric assay is based on the specific alkyl transferase activity of Epsilon GSTs for the haloalkene substrate iodoethane, which produces a dark blue colour highly correlated with AaGSTE2-2-overexpression in individual mosquitoes. The colour can be measured visually and spectrophotometrically.

Conclusions/Significance

The novel assay is substantially more sensitive compared to the gold standard CDNB assay and allows the discrimination of moderate resistance phenotypes. We anticipate that it will have direct application in routine vector monitoring as a resistance indicator and possibly an important impact on disease vector control.  相似文献   
96.
The efficiency of activating latent transforming growth factor (TGF)-β1 in systemic lupus erythematosus (SLE) may control the balance between inflammation and fibrosis, modulating the disease phenotype. To test this hypothesis we studied the ability to activate TGF-β1 in SLE patients and control individuals within the context of inflammatory disease activity, cumulative organ damage and early atherosclerosis. An Activation Index (AI) for TGF-β1 was determined for 32 patients with SLE and 33 age-matched and sex-matched control individuals by quantifying the increase in active TGF-β1 under controlled standard conditions. Apoptosis in peripheral blood mononuclear cells was determined by fluorescence-activated cell sorting. Carotid artery intima-media thickness was measured using standard Doppler ultrasound. These measures were compared between patients and control individuals. In an analysis conducted in patients, we assessed the associations of these measures with SLE phenotype, including early atherosclerosis. Both intima-media thickness and TGF-β1 AI for SLE patients were within the normal range. There was a significant inverse association between TGF-β1 AI and levels of apoptosis in peripheral blood mononuclear cells after 24 hours in culture for both SLE patients and control individuals. Only in SLE patients was there a significant negative correlation between TGF-β1 AI and low-density lipoprotein cholesterol (r = -0.404; P = 0.022) and between TGF-β1 AI and carotid artery intima-media thickness (r = -0.587; P = 0.0004). A low AI was associated with irreversible damage (SLICC [Systemic Lupus International Collaborating Clinics] Damage Index ≥1) and was inversely correlated with disease duration. Intima-media thickness was significantly linked to total cholesterol (r = 0.371; P = 0.037). To conclude, in SLE low normal TGF-β1 activation was linked with increased lymphocyte apoptosis, irreversible organ damage, disease duration, calculated low-density lipoprotein levels and increased carotid IMT, and may contribute to the development of early atherosclerosis.  相似文献   
97.
Nanoscale particles could be synthetically designed to potentially intervene in lipoprotein matrix retention and lipoprotein uptake in cells, processes central to atherosclerosis. We recently reported on lipoprotein interactions of nanoscale micelles self-assembled from amphiphilic scorpion-like macromolecules based on a lauryl chloride-mucic acid hydrophobic backbone and poly(ethylene glycol) shell. These micelles can be engineered to present varying levels of anionic chemistry, a key mechanism to induce differential retentivity of low-density lipoproteins (LDL) (Chnari, E.; Lari, H. B.; Tian, L.; Uhrich, K. E.; Moghe, P. V. Biomaterials 2005, 26, 3749). In this study, we examined the cellular interactions and the ability of carboxylate-terminated nanoparticles to modulate cellular uptake of differentially oxidized LDL. The nanoparticles were found to be highly biocompatible with cultured IC21 macrophages at all concentrations examined. When the nanoparticles as well as LDL were incubated with the cells over 24 h, a marked reduction in cellular uptake of LDL was observed in a nanoparticle concentration-dependent manner. Intermediate concentrations of nanoparticles (10(-6) M) elicited the most charge-specific reduction in uptake, as indicated by the difference in uptake due to anionic and uncharged nanoparticles. At these concentrations, anionic nanoparticles reduced LDL uptake for all degrees of oxidation (no oxidation, mild, high) of LDL, albeit with qualitative differences in the effects. The anionic nanoparticles were particularly effective at reducing the very high levels of uptake of the most oxidized level of LDL. Since complexation of LDL with anionic nanoparticles is reduced at higher degrees of LDL oxidation, our results suggest that anionic nanoparticles interfere in highly oxidized (hox) LDL uptake, likely by targeting cellular/receptor uptake mechanism, but control unoxidized LDL uptake by mechanisms related to direct LDL-nanoparticle complexation. Thus, anionically functionalized nanoparticles can modulate the otherwise unregulated internalization of differentially oxidized LDL.  相似文献   
98.
Strategies to prevent the uptake of modified low density lipoproteins (LDLs) by immune cells, a major trigger of inflammation and atherogenesis, are challenged by complex interfacial factors governing LDL receptor-mediated uptake. We examine a new approach based on a family of "nanoblockers", which are designed to examine the role of size, charge presentation, and architecture on inhibition of highly oxidized LDL (hoxLDL) uptake in macrophages. The nanoblockers are macromolecules containing mucic acid, lauryl chloride, and poly(ethylene glycol) that self-assemble into 15-20 nm nanoparticles. We report that the micellar configuration of the macromolecules and the combined display of anionic (carboxylate) groups in the hydrophobic region of the nanoblockers caused the most effective inhibition in the uptake of hoxLDL by IC21 macrophages. The nanoblockers primarily targeted SR-A and CD36, the major scavenger receptors and modulated the "atherogenic" phenotype of cells in terms of the degree of cytokine secretion, accumulation of cholesterol, and "foam cell" formation. These studies highlight the promise of synthetically engineered nanoblockers against oxidized LDL uptake.  相似文献   
99.
Duodenal cytochrome b (Dcytb) is a transmembrane oxidoreductase protein found in apical membranes of duodenal enterocytes, as well as human erythrocytes, with the capacity to transport electrons donated by cytosolic ascorbate to extracellular electron receptors such as Fe(III), dehydroascorbate, or molecular O2. We have investigated the capacity of the flavonoid quercetin to act as an electron donor for Dcytb in a manner similar to that of ascorbate by observing the reduction of extracellular Fe(III) to Fe(II) in either Madin–Darby canine kidney (MDCK) cells overexpressing Dcytb (Dcytb+) or Dcytb-null MDCK cells. In Dcytb+ cells there is a saturable increase in extracellular Fe(III) reduction in response to increasing intracellular quercetin concentrations (Km = 6.53 ± 1.57 μM), in addition to a small linear response, whereas in Dcytb-null cells there is only a small linear increase in extracellular Fe(III) reduction. No extracellular Fe(III) reduction occurs in Dcytb-null cells when the cells are preloaded with ascorbate. Flavonoids such as quercetin at their physiological concentrations can therefore function as modulators of ferric reductases, enhancing the import of Fe(II) and also providing extracellular reducing potential.  相似文献   
100.
Dilated cardiomyopathy is a disease of the heart muscle resulting from a diverse array of conditions that damages the heart and impairs myocardial function. Heart failure occurs when the heart is unable to pump blood at a rate which can accommodate the heart muscle's metabolic requirements. Several signaling pathways have been shown to be involved in the induction of cardiac disease and heart failure. Many of these pathways are linked to cardiac sarcoplasmic reticulum (SR) Ca cycling directly or indirectly. A large body of evidence points to the central role of abnormal Ca handling by SR proteins, Ca-ATPase pump (SERCA2a) and phospholamban (PLN), in pathophysiological heart conditions, compromising the contractile state of the cardiomyocytes. This review summarizes studies which highlight the key role of these two SR proteins in the regulation of cardiac function, the significance of SERCA2a-PLN interactions using transgenic approaches, and the recent discoveries of human PLN mutations leading to disease states. Finally, we will discuss extrapolation of experimental paradigms generated in animal models to the human condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号