首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1870篇
  免费   231篇
  2023年   21篇
  2022年   35篇
  2021年   72篇
  2020年   40篇
  2019年   53篇
  2018年   64篇
  2017年   58篇
  2016年   74篇
  2015年   105篇
  2014年   90篇
  2013年   109篇
  2012年   178篇
  2011年   140篇
  2010年   90篇
  2009年   84篇
  2008年   113篇
  2007年   98篇
  2006年   88篇
  2005年   74篇
  2004年   84篇
  2003年   63篇
  2002年   60篇
  2001年   20篇
  2000年   17篇
  1999年   18篇
  1998年   12篇
  1997年   19篇
  1996年   13篇
  1995年   12篇
  1994年   11篇
  1993年   11篇
  1992年   9篇
  1991年   8篇
  1990年   6篇
  1989年   15篇
  1988年   6篇
  1987年   6篇
  1986年   6篇
  1985年   10篇
  1984年   14篇
  1983年   9篇
  1982年   9篇
  1981年   5篇
  1980年   8篇
  1979年   6篇
  1978年   5篇
  1977年   6篇
  1976年   3篇
  1974年   7篇
  1973年   3篇
排序方式: 共有2101条查询结果,搜索用时 218 毫秒
151.
Advanced breast cancers frequently metastasize to bone, resulting in osteolytic lesions, yet the underlying mechanisms are poorly understood. Here we report that nuclear factor-kappaB (NF-kappaB) plays a crucial role in the osteolytic bone metastasis of breast cancer by stimulating osteoclastogenesis. Using an in vivo bone metastasis model, we found that constitutive NF-kappaB activity in breast cancer cells is crucial for the bone resorption characteristic of osteolytic bone metastasis. We identified the gene encoding granulocyte macrophage-colony stimulating factor (GM-CSF) as a key target of NF-kappaB and found that it mediates osteolytic bone metastasis of breast cancer by stimulating osteoclast development. Moreover, we observed that the expression of GM-CSF correlated with NF-kappaB activation in bone-metastatic tumor tissues from individuals with breast cancer. These results uncover a new and specific role of NF-kappaB in osteolytic bone metastasis through GM-CSF induction, suggesting that NF-kappaB is a potential target for the treatment of breast cancer and the prevention of skeletal metastasis.  相似文献   
152.
New trends in the treatment of bone metastasis   总被引:1,自引:0,他引:1  
Bone metastasis is often the penultimate harbinger of death for many cancer patients. Bone metastases are often associated with fractures and severe pain resulting in decreased quality of life. Accordingly, effective therapies to inhibit the development or progression of bone metastases will have important clinical benefits. To achieve this goal understanding the mechanisms through which bone metastases develop and progress may provide targets to inhibit the metastases. In the past few years, there have been advances in both understanding the mechanisms through which bone metastases develop and how they impact bone remodeling. Additionally, gains in promising clinical strategies to target bone metastases have been developed. In this prospectus, we will discuss some of these advances.  相似文献   
153.
154.
Widespread RNA segregation in a spiralian embryo   总被引:1,自引:0,他引:1  
Asymmetric cell divisions are a crucial mode of cell fate specification in multicellular organisms, but their relative contribution to early embryonic patterning varies among taxa. In the embryo of the mollusc Ilyanassa, most of the early cell divisions are overtly asymmetric. During Ilyanassa early cleavage, mRNAs for several conserved developmental patterning genes localize to interphase centrosomes, and then during division they move to a portion of the cortex that will be inherited by one daughter cell. Here we report an unbiased survey of RNA localization in the Ilyanassa embryo, and examine the overall patterns of centrosomal localization during early development. We find that 3-4% of RNAs are specifically localized to centrosomes during early development, and the remainder are either ubiquitously distributed throughout the cytoplasm or weakly enriched on centrosomes compared with levels in the cytoplasm. We observe centrosomal localization of RNAs in all cells from zygote through the fifth cleavage cycle, and asymmetric RNA segregation in all divisions after the four-cell stage. Remarkably, each specifically localized message is found on centrosomes in a unique subset of cells during early cleavages, and most are found in unique sets of cells at the 24-cell stage. Several specifically localized RNAs are homologous to developmental regulatory proteins in other embryos. These results demonstrate that the mechanisms of localization and segregation are extraordinarily intricate in this system, and suggest that these events are involved in cell fate specification across all lineages in the early Ilyanassa embryo. We propose that greater reliance on segregation of determinants in early cleavage increases constraint on cleavage patterns in molluscs and other spiralian groups.  相似文献   
155.
Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies.Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored.Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent.Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence.  相似文献   
156.
Cercarial dermatitis, also known as swimmer''s itch, is an allergenic skin reaction followed by intense itching caused by schistosome cercariae penetrating human skin. Cercarial dermatitis outbreaks occur globally and are frequently associated with freshwater lakes and are occasionally associated with marine or estuarine waters where birds reside year-round or where migratory birds reside. In this study, a broadly reactive TaqMan assay targeting 18S rRNA gene (ribosomal DNA [rDNA]) sequences that was based on a genetically diverse panel of schistosome isolates representing 13 genera and 20 species (the 18S rDNA TaqMan assay) was developed. A PCR assay was also developed to amplify a 28S rDNA region for subsequent sequencing to identify schistosomes. When applied to surface water samples seeded with Schistosoma mansoni cercariae, the 18S rDNA TaqMan assay enabled detection at a level of 5 S. mansoni cercariae in 100 liters of lake water. The 18S rDNA TaqMan and 28S rDNA PCR sequencing assays were also applied to 100-liter water samples collected from lakes in Nebraska and Wisconsin where there were reported dermatitis outbreaks. Avian schistosome DNA was detected in 11 of 34 lake water samples using the TaqMan assay. Further 28S rDNA sequence analysis of positive samples confirmed the presence of avian schistosome DNA and provided a preliminary identification of the avian schistosomes in 10 of the 11 samples. These data indicate that the broadly schistosome-reactive TaqMan assay can be effective for rapid screening of large-volume water samples for detection of avian schistosomes, thereby facilitating timely response actions to mitigate or prevent dermatitis outbreaks. Additionally, samples positive by the 18S rDNA TaqMan assay can be further assayed using the 28S rDNA sequencing assay to both confirm the presence of schistosomes and contribute to their identification.  相似文献   
157.
158.
Protein secretion is a major contributor to Gram‐negative bacterial virulence. Type Vb or two‐partner secretion (TPS) pathways utilize a membrane bound β‐barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C‐proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N‐proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site‐specific mutants of HpmA265. By correlating the effect of individual site‐specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C‐terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C‐terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N‐proximal polar core subdomain.  相似文献   
159.
Theory assumes that postcopulatory sexual selection favors increased investment in testes size because greater numbers of sperm within the ejaculate increase the chance of success in sperm competition, and larger testes are able to produce more sperm. However, changes in the organization of the testes tissue may also affect sperm production rates. Indeed, recent comparative analyses suggest that sperm competition selects for greater proportions of sperm‐producing tissue within the testes. Here, we explicitly test this hypothesis using the powerful technique of experimental evolution. We allowed house mice (Mus domesticus) to evolve via monogamy or polygamy in six replicate populations across 24 generations. We then used histology and image analysis to quantify the proportion of sperm‐producing tissue (seminiferous tubules) within the testes of males. Our results show that males that had evolved with sperm competition had testes with a higher proportion of seminiferous tubules compared with males that had evolved under monogamy. Previously, it had been shown that males from the polygamous populations produced greater numbers of sperm in the absence of changes in testes size. We thus provide evidence that sperm competition selects for an increase in the density of sperm‐producing tissue, and consequently increased testicular efficiency.  相似文献   
160.
The extracellular regions of epithelial Na+ channel subunits are highly ordered structures composed of domains formed by α helices and β strands. Deletion of the peripheral knuckle domain of the α subunit in the αβγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na+ (Na+ self-inhibition). In contrast, deletion of either the β or γ subunit knuckle domain within the αβγ trimer dramatically reduces epithelial Na+ channel function and surface expression, and impairs subunit maturation. We systematically mutated individual α subunit knuckle domain residues and assessed functional properties of these mutants. Cysteine substitutions at 14 of 28 residues significantly suppressed Na+ self-inhibition. The side chains of a cluster of these residues are non-polar and are predicted to be directed toward the palm domain, whereas a group of polar residues are predicted to orient their side chains toward the space between the knuckle and finger domains. Among the mutants causing the greatest suppression of Na+ self-inhibition were αP521C, αI529C, and αS534C. The introduction of Cys residues at homologous sites within either the β or γ subunit knuckle domain resulted in little or no change in Na+ self-inhibition. Our results suggest that multiple residues in the α subunit knuckle domain contribute to the mechanism of Na+ self-inhibition by interacting with palm and finger domain residues via two separate and chemically distinct motifs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号