首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1810篇
  免费   219篇
  2023年   21篇
  2022年   35篇
  2021年   71篇
  2020年   40篇
  2019年   52篇
  2018年   63篇
  2017年   58篇
  2016年   74篇
  2015年   105篇
  2014年   88篇
  2013年   103篇
  2012年   171篇
  2011年   138篇
  2010年   88篇
  2009年   83篇
  2008年   111篇
  2007年   93篇
  2006年   87篇
  2005年   74篇
  2004年   82篇
  2003年   60篇
  2002年   58篇
  2001年   19篇
  2000年   13篇
  1999年   15篇
  1998年   12篇
  1997年   18篇
  1996年   12篇
  1995年   11篇
  1994年   11篇
  1993年   10篇
  1992年   7篇
  1991年   8篇
  1990年   6篇
  1989年   15篇
  1988年   5篇
  1987年   6篇
  1986年   5篇
  1985年   7篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1974年   6篇
  1942年   2篇
排序方式: 共有2029条查询结果,搜索用时 953 毫秒
91.
Siemann E  Rogers WE 《Oecologia》2003,135(3):451-457
Invasive plants are often larger in their introduced range compared to their native range. This may reflect an evolved reduction in defense and increase in growth in response to low herbivory in their introduced range. Key elements of this scenario include genetic differences in defense and growth yet uniformly low rates of herbivory in the field that dissociate defense and herbivore damage for alien species. We conducted a laboratory experiment with Melanoplus angustipennis grasshoppers and Chinese Tallow Tree seedlings ( Sapium sebiferum) from its native range (China) and its introduced range (Texas, USA) where it is invasive. We caged grasshoppers with pairs of Sapium seedlings from the same continent or different continents. The amounts of leaf area removed from Texas and China seedlings, and their height growth rates, were indistinguishable when both seedlings in the pair were from the same continent. However, when grasshoppers had a choice between seedlings from different continents, they removed more Texas Sapium foliage than China Sapium foliage and height growth rates were higher for China Sapium seedlings compared to Texas seedlings. Grasshopper growth rates increased with greater Sapium foliage consumption. In a common garden in Texas, Sapium seedlings from Texas grew 40% faster than those from China. Chewing insect herbivores removed little Sapium foliage in the field experiment. Although grasshoppers preferred to feed on Texas Sapium when offered a choice in the laboratory, extremely low herbivory levels in the field may have allowed the Texas seedlings to outperform the China seedlings in the common garden. These results demonstrate post-invasion genetic differences in herbivore resistance and growth of an invasive plant species together with a decoupling of defense and herbivore choice in the introduced range.  相似文献   
92.
Four independent mutations were introduced to the Escherichia coli alkaline phosphatase active site, and the resulting enzymes characterized to study the effects of Glu as a metal ligand. The mutations D51E and D153E were created to study the effects of lengthening the carboxyl group by one methylene unit at the metal interaction site. The D51E enzyme had drastically reduced activity and lost one zinc per active site, demonstrating importance of the position of Asp(51). The D153E enzyme had an increased k(cat) in the presence of high concentrations of Mg(2+), along with a decreased Mg(2+) affinity as compared to the wild-type enzyme. The H331E and H412E enzymes were created to probe the requirement for a nitrogen-containing metal ligand at the Zn(1) site. The H331E enzyme had greatly decreased activity, and lost one zinc per active site. In the absence of high concentrations of Zn(2+), dephosphorylation occurs at an extremely reduced rate for the H412E enzyme, and like the H331E enzyme, metal affinity is reduced. Except at the 153 position, Glu is not an acceptable metal chelating amino acid at these positions in the E. coli alkaline phosphatase active site.  相似文献   
93.
In the male silkmoth Bombyx mori, olfactory information is relayed from olfactory receptor neurons in the antennae to the antennal lobe, and then to a variety of protocerebral neuropils. Currently, very little is known about neuromodulators that may affect the dynamics of this olfactory neural network. Immunocytochemical studies have revealed the presence of a serotonin-immunoreactive (SI) neuron that, in several insect species, is thought to provide feedback to the antennal lobe. To date, no studies have revealed details of this neuron's physiology. Using intracellular recording and staining, the silkmoth SI neuron (in two individuals) was first characterized physiologically and then stained with Lucifer Yellow to reveal morphological details. Immunocytochemical methods were also used to confirm the presence of serotonin. The silkmoth SI neuron branched in many important brain neuropils such as the mushroom body, central body, lateral accessory lobe and antennal lobe. The SI neuron in both individuals fired spontaneous, long duration action potentials, and responded to mechanosensory stimuli to the antennae.  相似文献   
94.
95.
Kv4.2 is a voltage-gated potassium channel that is critical in controlling the excitability of myocytes and neurons. Processes that influence trafficking and surface distribution patterns of Kv4.2 will affect its ability to contribute to cellular functions. The scaffolding/clustering protein PSD-95 regulates trafficking and distribution of several receptors and Shaker family Kv channels. We therefore investigated whether the C-terminal valine-serine-alanine-leucine (VSAL) of Kv4.2 is a novel binding motif for PSD-95. By using co-immunoprecipitation assays, we determined that full-length Kv4.2 and PSD-95 interact when co-expressed in mammalian cell lines. Mutation analysis in this heterologous expression system showed that the VSAL motif of Kv4.2 is necessary for PSD-95 binding. PSD-95 increased the surface expression of Kv4.2 protein and caused it to cluster, as shown by deconvolution microscopy and biotinylation assays. Deleting the C-terminal VSAL motif of Kv4.2 eliminated these effects, as did substituting a palmitoylation-deficient PSD-95 mutant. In addition to these effects of PSD-95 on Kv4.2 distribution, the channel itself promoted redistribution of PSD-95 to the cell surface in the heterologous expression system. This work represents the first evidence that a member of the Shal subfamily of Kv channels can bind to PSD-95, with functional consequences.  相似文献   
96.
97.
Using a previously described human keratin 14 (K14) promoter, we created mice expressing a peptide Ag (OVAp) in epithelial cells of the skin, tongue, esophagus, and thymus. Double transgenic mice that also express a TCR specific for this Ag (OT-I) showed evidence for Ag-driven receptor editing in the thymus. Surprisingly, such mice exhibited a severe autoimmune disease. In this work we describe the features of this disease and demonstrate that it is dependent on CD8 T cells. Consistent with the Ag expression pattern dictated by the human K14 promoter, an inflammatory infiltrate was observed in skin and esophagus and around bile ducts of the liver. We also observed a high level of TNF-alpha in the serum. Given that Ag expression in the thymus induced development of T cells with dual TCR reactivity, and that dual-reactive cells have been suggested to have autoimmune potential, we tested whether they were a causal factor in the disease observed here. We found that OT-I/K14-OVAp animals on a recombinase-activating gene-deficient background still suffered from disease. In addition, OT-I animals expressing OVA broadly in all tissues under a different promoter did not experience disease, despite having a similar number of dual-specific T cells. Thus, in this model it would appear that dual-reactive T cells do not underlie autoimmune pathology. Finally, we extended these observations to a second transgenic system involving 2C TCR-transgenic animals expressing the SIY peptide Ag with the hK14 promoter. We discuss the potential relationship between autoimmunity and self-Ags that are expressed in stratified epithelium.  相似文献   
98.
The objective of this study was to determine whether tumor-infiltrating B cells (TIL-B) of infiltrating ductal carcinoma (IDC) of the breast represent a tumor-specific humoral immune response. Immunohistochemical analysis of three Her-2/neu-negative IDC tumors from geriatric patients showed that TIL-B cluster in structures similar to germinal centers containing CD20(+) B lymphocyte and CD3(+) T lymphocyte zones with interdigitating CD21(+) follicular dendritic cells, suggesting an in situ immune response. A total of 29, 31, and 58 IgG1 H chain clones was sequenced from the three IDC tumors, respectively. Intratumoral oligoclonal expansion of TIL-B was demonstrated by a preponderance (45-68%) of clonal B cells. In contrast, only 7% of tumor-draining lymph node and 0% of healthy donor PBL IgG H chains were clonal, consistent with the larger repertoires of node and peripheral populations. Patterns and levels of TIL-B IgG H chain somatic hypermutation suggested affinity maturation in intratumoral germinal centers. To examine the specificity of TIL-B Ig, a phage-displayed Fab library was generated from the TIL-B of one IDC tumor. Panning with an allogeneic breast cancer cell line enriched Fab binding to breast cancer cells, but not nonmalignant cell lines tested. However, panning with autologous tumor tissue lysate increased binding of Fab to both tumor tissue lysate and healthy breast tissue lysate. These data suggest an in situ Ag-driven oligoclonal B cell response to a variety of tumor- and breast-associated Ags.  相似文献   
99.
We have identified a missense mutation in the motor domain of the neuronal kinesin heavy chain gene KIF5A, in a family with hereditary spastic paraplegia. The mutation occurs in the family in which the SPG10 locus was originally identified, at an invariant asparagine residue that, when mutated in orthologous kinesin heavy chain motor proteins, prevents stimulation of the motor ATPase by microtubule-binding. Mutation of kinesin orthologues in various species leads to phenotypes resembling hereditary spastic paraplegia. The conventional kinesin motor powers intracellular movement of membranous organelles and other macromolecular cargo from the neuronal cell body to the distal tip of the axon. This finding suggests that the underlying pathology of SPG10 and possibly of other forms of hereditary spastic paraplegia may involve perturbation of neuronal anterograde (or retrograde) axoplasmic flow, leading to axonal degeneration, especially in the longest axons of the central nervous system.  相似文献   
100.
We investigated the hypothesis that neural stem cells (NSCs) possess an intrinsic capacity to "rescue" dysfunctional neurons in the brains of aged mice. The study focused on a neuronal cell type with stereotypical projections that is commonly compromised in the aged brain-the dopaminergic (DA) neuron. Unilateral implantation of murine NSCs into the midbrains of aged mice, in which the presence of stably impaired but nonapoptotic DA neurons was increased by treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), was associated with bilateral reconstitution of the mesostriatal system. Functional assays paralleled the spatiotemporal recovery of tyrosine hydroxylase (TH) and dopamine transporter (DAT) activity, which, in turn, mirrored the spatiotemporal distribution of donor-derived cells. Although spontaneous conversion of donor NSCs to TH(+) cells contributed to nigral reconstitution in DA-depleted areas, the majority of DA neurons in the mesostriatal system were "rescued" host cells. Undifferentiated donor progenitors spontaneously expressing neuroprotective substances provided a plausible molecular basis for this finding. These observations suggest that host structures may benefit not only from NSC-derived replacement of lost neurons but also from the "chaperone" effect of some NSC-derived progeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号