首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   723篇
  免费   68篇
  2021年   8篇
  2020年   5篇
  2019年   8篇
  2018年   7篇
  2017年   9篇
  2016年   22篇
  2015年   38篇
  2014年   36篇
  2013年   30篇
  2012年   49篇
  2011年   64篇
  2010年   35篇
  2009年   25篇
  2008年   42篇
  2007年   37篇
  2006年   29篇
  2005年   22篇
  2004年   31篇
  2003年   18篇
  2002年   29篇
  2001年   13篇
  2000年   15篇
  1999年   13篇
  1998年   14篇
  1997年   12篇
  1995年   4篇
  1993年   4篇
  1992年   10篇
  1991年   6篇
  1989年   5篇
  1988年   7篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1981年   4篇
  1980年   7篇
  1979年   6篇
  1975年   6篇
  1974年   4篇
  1973年   11篇
  1972年   4篇
  1971年   7篇
  1970年   5篇
  1969年   5篇
  1968年   4篇
  1967年   8篇
  1966年   9篇
  1965年   5篇
排序方式: 共有791条查询结果,搜索用时 15 毫秒
41.
42.
43.
Davies LA  Zhong Q  Klein ML  Scharf D 《FEBS letters》2000,478(1-2):61-66
The mutation of a single leucine residue (L38) to methionine (M) is known experimentally to significantly increase the affinity of the synthetic four-alpha-helix bundle (Aalpha(2))(2) for the anesthetic halothane. We present a molecular dynamics study of the mutant (Aalpha(2)-L38M)(2) peptide, which consists of a dimer of 62-residue U-shaped di-alpha-helical monomers assembled in an anti topology. A comparison between the simulation results and those obtained for the native (Aalpha(2))(2) peptide indicates that the overall secondary structure of the bundle is not affected by the mutation, but that the side chains within the monomers are better packed in the mutant structure. Unlike the native peptide, binding of a single halothane molecule to the hydrophobic core of (Aalpha(2)-L38M)(2) deforms the helical nature of one monomer in a region close to the mutation site. Increased exposure of the cysteine side chain to the hydrophobic core in the mutant structure leads to the enhancement of the attractive interaction between halothane and this specific residue. Since the mutated residues are located outside the hydrophobic core the observed increased affinity for halothane appears to be an indirect effect of the mutation.  相似文献   
44.
K Tu  M Tarek  M L Klein    D Scharf 《Biophysical journal》1998,75(5):2123-2134
We report the results of constant temperature and pressure molecular dynamics calculations carried out on the liquid crystal (Lalpha) phase of dipalmitoylphosphatidylcholine with a mole fraction of 6.5% halothane (2-3 MAC). The present results are compared with previous simulations for pure dipalmitoylphosphatidylcholine under the same conditions (Tu et al., 1995. Biophys. J. 69:2558-2562) and with various experimental data. We have found subtle structural changes in the lipid bilayer in the presence of the anesthetic compared with the pure lipid bilayer: a small lateral expansion is accompanied by a modest contraction in the bilayer thickness. However, the overall increase in the system volume is found to be comparable to the molecular volume of the added anesthetic molecules. No significant change in the hydrocarbon chain conformations is apparent. The observed structural changes are in fair agreement with NMR data corresponding to low anesthetic concentrations. We have found that halothane exhibits no specific binding to the lipid headgroup or to the acyl chains. No evidence is obtained for preferential orientation of halothane molecules with respect to the lipid/water interface. The overall dynamics of the lipid-bound halothane molecules appears to be reminiscent of that of other small solutes (Bassolino-Klimas et al., 1995. J. Am. Chem. Soc. 117:4118-4129).  相似文献   
45.
The cytokine Granulocyte–Macrophage Colony-Stimulating Factor (GM-CSF) regulates proliferation, differentiation, and apoptosis during myelopoiesis and erythropoiesis. Structure–function relationships of GM-CSF interactions with its receptor (GM-R), the biochemistry of GM-R signal transduction, and GM-CSF action in vivo are relatively well understood. Much less is known, however, about GM-R function in primary hematopoietic cells. In this paper we show that expression of the human GM-R in a heterologous cell system (primary avian erythroid and myeloid cells) confirms respective results in murine or human cell lines, but also provides new insights how the GM-R regulates progenitor proliferation and differentiation. As expected, the hGM-CSF stimulated myeloid progenitor proliferation and differentiation and enhanced erythroid progenitor proliferation during terminal differentiation. In the latter cells, however, the hGM-R only partially substituted for the activities of the erythropoietin receptor (EpoR). It failed to replace the EpoR in its cooperation with c-Kit to induce long-term proliferation of erythroid progenitors. Furthermore, the hGM-R α chain specifically interfered with EpoR signaling, an activity neither seen for the βc subunit of the receptor complex alone, nor for the α chain of the closely related Interleukin-3 receptor. These results point to a novel role of the GM-R α chain in defining cell type–specific functions of the GM-R.  相似文献   
46.
The Interleukin-17 Gene of Herpesvirus Saimiri   总被引:2,自引:0,他引:2       下载免费PDF全文
In comparison to wild-type herpesvirus saimiri, viral interleukin-17 gene knockout mutants have unaltered behavior regarding viral replication, T-cell transformation in vitro, and pathogenicity in cottontop tamarins. Thus, this gene is not required for T-cell lymphoma induction but may contribute to apathogenic viral persistence in the natural host, the squirrel monkey.  相似文献   
47.
In Alzheimer’s disease the neuronal microtubule-associated protein tau becomes highly phosphorylated, loses its binding properties, and aggregates into paired helical filaments. There is increasing evidence that the events leading to this hyperphosphorylation are related to mitotic mechanisms. Hence, we have analyzed the physiological phosphorylation of endogenous tau protein in metabolically labeled human neuroblastoma cells and in Chinese hamster ovary cells stably transfected with tau. In nonsynchronized cultures the phosphorylation pattern was remarkably similar in both cell lines, suggesting a similar balance of kinases and phosphatases with respect to tau. Using phosphopeptide mapping and sequencing we identified 17 phosphorylation sites comprising 80–90% of the total phosphate incorporated. Most of these are in SP or TP motifs, except S214 and S262. Since phosphorylation of microtubule-associated proteins increases during mitosis, concomitant with increased microtubule dynamics, we analyzed cells mitotically arrested with nocodazole. This revealed that S214 is a prominent phosphorylation site in metaphase, but not in interphase. Phosphorylation of this residue strongly decreases the tau–microtubule interaction in vitro, suppresses microtubule assembly, and may be a key factor in the observed detachment of tau from microtubules during mitosis. Since S214 is also phosphorylated in Alzheimer’s disease tau, our results support the view that reactivation of the cell cycle machinery is involved in tau hyperphosphorylation.  相似文献   
48.
The involvement of kinases in heat stress signaling in tomato cells was studied by in gel kinase assays using myelin basic protein as substrate, and by in vitro phosphorylation assays in Mono Q fractions of tomato cell lysates. A kinase with an apparent molecular mass of approximately 50 kDa is rapidly deactivated upon heat stress as judged from in gel kinase assays. Cycloheximide treatment increases kinase activity, but concomitant heat treatment abolishes cycloheximide-induced activation. Kinase activity from untreated cells was recovered at about 130 and 250 mM NaCl from Mono Q columns.  相似文献   
49.
The effects of periodic obstructive apneas onsystemic and myocardial hemodynamics were studied in ninepreinstrumented sedated pigs under four conditions: breathing room air(RA), breathing 100% O2,breathing RA after critical coronary stenosis (CS) of the left anteriordescending coronary artery, and breathing RA after autonomic blockadewith hexamethonium (Hex). Apneas with RA increased mean arterialpressure (MAP; from baseline 103.0 ± 3.5 to late apnea 123.6 ± 7.0 Torr, P < 0.001) and coronary blood flow (CBF; late apnea 193.9 ± 22.9% of baseline,P < 0.001) but decreased cardiacoutput (CO; from baseline 2.97 ± 0.15 to late apnea 2.39 ± 0.19 l/min, P < 0.001). Apneas withO2 increased MAP (from baseline105.1 ± 4.6 to late apnea 110.7 ± 4.8 Torr, P < 0.001). Apneas with CS producedsimilar increases in MAP as apneas with RA but greater decreases in CO(from baseline 3.03 ± 0.19 to late apnea 2.1 ± 0.15 l/min,P < 0.001). In LAD-perfused myocardium, there was decreased segmental shortening (baseline 11.0 ± 1.5 to late apnea 7.6 ± 2.0%,P < 0.01) and regionalintramyocardial pH (baseline 7.05 ± 0.03 to late apnea 6.72 ± 0.11, P < 0.001) during apneas withCS but under no other conditions. Apneas with Hex increased to the sameextent as apneas with RA. Myocardial O2 demand remained unchangedduring apnea relative to baseline. We conclude that obstructiveapnea-induced changes in left ventricular afterload and CO aresecondary to autonomic-mediated responses to hypoxemia. Increased CBFduring apneas is related to regional metabolic effects of hypoxia andnot to autonomic factors. In the presence of limited coronary flowreserve, decreased O2 supply during apneas can lead to myocardial ischemia, which in turnadversely affects left ventricular function.

  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号