首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   4篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   9篇
  2013年   5篇
  2012年   17篇
  2011年   15篇
  2010年   5篇
  2009年   6篇
  2008年   12篇
  2007年   8篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有146条查询结果,搜索用时 31 毫秒
41.
The degradation rate of the D1 polypeptide was measured in threeSynechocystis PCC 6803 mutantsin vivo. Mutations were introduced into a putative cleavage area of the D1 polypeptide (QEEET motif) and into the PEST-like area. PEST sequences are often found in proteins with a high turnover rate. The QEEET-motif mutants are CA1 [(E242-E244);Q241H] and E243K, and the third mutation, E229D, was directed to the PEST-like area. During high-light illumination (1500 mol photons m-2s-1) that induced photoinhibition of photosystem II (PSII), the half-life time of the D1 polypeptide in mutant E229D (t 1/2=35 min) was about twice as long as in AR (control strain) cells (t 1/2=19 min). In growth light (40 mol photons m-2s-1), the degradation rate of the D1 polypeptide in E229D and AR strains was the same (t 1/25 h). In growth light the D1 polypeptide was degraded faster in both QEEET-motif mutants than in the AR strain, but in photoinhibitory light the degradation rates were similar. According to these results, the highly conservative QEEET motif as such is not required for the proteolytic cut of the D1 polypeptide, but it does affect the rate of degradation. No simple correlation existed between the degradation rate of the D1 polypeptide and the susceptibility of PSII to photoinhibition in mutant and AR cells under our experimental conditions.  相似文献   
42.
We show that the thylakoid membrane phosphoprotein TMP14 is a novel subunit of plant photosystem I (PSI). Blue native/SDS-PAGE and sucrose gradient fractionation demonstrated the association of the protein exclusively with PSI. We designate the protein PSI-P. The presence of PSI-P subunit in Arabidopsis mutants lacking other PSI subunits was analyzed and suggested a location in the proximity of PSI-L, -H and -O subunits. The PSI-P protein was not differentially phosphorylated in state 1 and state 2.  相似文献   
43.
Tobacco rbcL deletion mutant, which lacks the key enzyme Rubisco for photosynthetic carbon assimilation, was characterized with respect to thylakoid functional properties and protein composition. The Delta rbcL plants showed an enhanced capacity for dissipation of light energy by non-photochemical quenching which was accompanied by low photochemical quenching and low overall photosynthetic electron transport rate. Flash-induced fluorescence relaxation and thermoluminescence measurements revealed a slow electron transfer and decreased redox gap between Q(A) and Q(B), whereas the donor side function of the Photosystem II (PSII) complex was not affected. The 77 K fluorescence emission spectrum of Delta rbcL plant thylakoids implied a presence of free light harvesting complexes. Mutant plants also had a low amount of photooxidisible P700 and an increased ratio of PSII to Photosystem I (PSI). On the other hand, an elevated level of plastid terminal oxidase and the lack of F0 'dark rise' in fluorescence measurements suggest an enhanced plastid terminal oxidase-mediated electron flow to O2 in Delta rbcL thylakoids. Modified electron transfer routes together with flexible dissipation of excitation energy through PSII probably have a crucial role in protection of PSI from irreversible protein damage in the Delta rbcL mutant under growth conditions. This protective capacity was rapidly exceeded in Delta rbcL mutant when the light level was elevated resulting in severe degradation of PSI complexes.  相似文献   
44.
45.
Plants need a highly responsive regulatory system to keep photosynthetic light reactions in balance with the needs and restrictions of the downstream metabolism. This mechanism optimises plant growth under naturally fluctuating light conditions. In this opinion article, we present a model addressing the biological role of the light intensity-controlled phosphorylation of light-harvesting complex II (LHCII) proteins and its relation with the non-photochemical quenching of excitation energy (NPQ). We overturn a long held view of the possible role of 'state transitions'. Instead, we discuss the interplay between LHCII protein phosphorylation and NPQ, a mechanism that is crucial for regulating excitation energy distribution to the two photosystems (PSII and PSI) and balancing the intersystem electron flow despite constant fluctuations in light intensity.  相似文献   
46.
Cyanobacterial NDH-1 complexes belong to a family of energy converting NAD(P)H:Quinone oxidoreductases that includes bacterial type-I NADH dehydrogenase and mitochondrial Complex I. Several distinct NDH-1 complexes may coexist in cyanobacterial cells and thus be responsible for a variety of functions including respiration, cyclic electron flow around PSI and CO(2) uptake. The present review is focused on specific features that allow to regard the cyanobacterial NDH-1 complexes, together with NDH complexes from chloroplasts, as a separate sub-class of the Complex I family of enzymes. Here, we summarize our current knowledge about structure of functionally different NDH-1 complexes in cyanobacteria and consider implications for a functional mechanism. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   
47.
Drought is a major cause of losses in crop yield. Under field conditions, plants exposed to drought are usually also experiencing rapid changes in light intensity. Accordingly, plants need to acclimate to both, drought and light stress. Two crucial mechanisms in plant acclimation to changes in light conditions comprise thylakoid protein phosphorylation and dissipation of light energy as heat by non-photochemical quenching (NPQ). Here, we analyzed the acclimation efficacy of two different wheat varieties, by applying fluctuating light for analysis of plants, which had been subjected to a slowly developing drought stress as it usually occurs in the field. This novel approach allowed us to distinguish four drought phases, which are critical for grain yield, and to discover acclimatory responses which are independent of photodamage. In short-term, under fluctuating light, the slowdown of NPQ relaxation adjusts the photosynthetic activity to the reduced metabolic capacity. In long-term, the photosynthetic machinery acquires a drought-specific configuration by changing the PSII-LHCII phosphorylation pattern together with protein stoichiometry. Therefore, the fine-tuning of NPQ relaxation and PSII-LHCII phosphorylation pattern represent promising traits for future crop breeding strategies.  相似文献   
48.
49.
Nostoc   punctiforme strain Pasteur Culture Collection (PCC) 73102, a sequenced filamentous cyanobacterium capable of nitrogen fixation, is used as a model organism for characterization of bioenergetic processes during nitrogen fixation in Nostoc . A protocol for isolating thylakoid membranes was developed to examine the biochemical and biophysical aspects of photosynthetic electron transfer. Thylakoids were isolated from filaments of N.   punctiforme by pneumatic pressure-drop lysis. The activity of photosynthetic enzymes in the isolated thylakoids was analysed by measuring oxygen evolution activity, fluorescence spectroscopy and electron paramagnetic resonance spectroscopy. Electron transfer was found functional in both PSII and PSI. Electron transfer measurements in PSII, using diphenylcarbazide as electron donor and 2,6-dichlorophenolindophenol as electron acceptor, showed that 80% of the PSII centres were active in water oxidation in the final membrane preparation. Analysis of the membrane protein complexes was made by 2D gel electrophoresis, and identification of representative proteins was made by mass spectrometry. The ATP synthase, several oligomers of PSI, PSII and the NAD(P)H dehydrogenase (NDH)-1L and NDH-1M complexes, were all found in the gels. Some differences were noted compared with previous results from Synechocystis sp. PCC 6803. Two oligomers of PSII were found, monomeric and dimeric forms, but no CP43-less complexes. Both dimeric and monomeric forms of Cyt b 6/ f could be observed. In all, 28 different proteins were identified, of which 25 are transmembrane proteins or membrane associated ones.  相似文献   
50.
The functional state of the Photosystem (PS) II complex in Arabidopsis psbR T-DNA insertion mutant was studied. The DeltaPsbR thylakoids showed about 34% less oxygen evolution than WT, which correlates with the amounts of PSII estimated from Y(D)(ox) radical EPR signal. The increased time constant of the slow phase of flash fluorescence (FF)-relaxation and upshift in the peak position of the main TL-bands, both in the presence and in the absence of DCMU, confirmed that the S(2)Q(A)(-) and S(2)Q(B)(-) charge recombinations were stabilized in DeltaPsbR thylakoids. Furthermore, the higher amount of dark oxidized Cyt-b559 and the increased proportion of fluorescence, which did not decay during the 100s time span of the measurement thus indicating higher amount of Y(D)(+)Q(A)(-) recombination, pointed to the donor side modifications in DeltaPsbR. EPR measurements revealed that S(1)-to-S(2)-transition and S(2)-state multiline signal were not affected by mutation. The fast phase of the FF-relaxation in the absence of DCMU was significantly slowed down with concomitant decrease in the relative amplitude of this phase, indicating a modification in Q(A) to Q(B) electron transfer in DeltaPsbR thylakoids. It is concluded that the lack of the PsbR protein modifies both the donor and the acceptor side of the PSII complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号