首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8467篇
  免费   620篇
  国内免费   5篇
  9092篇
  2023年   43篇
  2022年   93篇
  2021年   195篇
  2020年   131篇
  2019年   125篇
  2018年   184篇
  2017年   150篇
  2016年   281篇
  2015年   403篇
  2014年   461篇
  2013年   570篇
  2012年   695篇
  2011年   714篇
  2010年   441篇
  2009年   381篇
  2008年   495篇
  2007年   518篇
  2006年   504篇
  2005年   418篇
  2004年   383篇
  2003年   303篇
  2002年   336篇
  2001年   78篇
  2000年   55篇
  1999年   59篇
  1998年   89篇
  1997年   36篇
  1996年   53篇
  1995年   52篇
  1994年   50篇
  1993年   49篇
  1992年   41篇
  1991年   40篇
  1990年   33篇
  1989年   37篇
  1988年   32篇
  1987年   43篇
  1986年   29篇
  1985年   39篇
  1984年   36篇
  1983年   46篇
  1982年   34篇
  1981年   35篇
  1980年   23篇
  1979年   23篇
  1978年   19篇
  1977年   34篇
  1976年   20篇
  1973年   14篇
  1964年   14篇
排序方式: 共有9092条查询结果,搜索用时 15 毫秒
91.
In caulonemal filaments of the mossPhyscomitrella patens (Hedw.), red light triggers a phytochrome-mediated transient depolarisation of the plasma membrane and the formation of side branch initials. Three-electrode voltage clamp and ion flux measurements were employed to elucidate the ionic mechanism and physiological relevance of the red-light-induced changes in ion transport. Current-voltage analyses indicated that ion channels permeable to K+ and Ca2+ are activated at the peak of the depolarisation. Calcium influx evoked by red light coincided with the depolarisation in various conditions, suggesting the involvement of voltage-gated Ca2+ channels. Respective K+ fluxes showed a small initial influx followed by a dramatic transient efflux. A role of anion channels in the depolarising current is suggested by the finding that Cl efflux was also increased after red light irradiation. In the presence of tetraethylammonium (10 mM) or niflumic acid (1 M), which block the red-light-induced membrane depolarisation and ion fluxes, the red-light-promoted formation of side branch initials was also abolished. Lanthanum (100 M), which inhibits K+ fluxes and part of the initial Ca2+ influx activated by red light, reduced the development of side branch initials in red light by 50%. The results suggest a causal link between the red-light-induced ion fluxes and the physiological response. The sequence of events underlying the red-light-triggered membrane potential transient and the role of ion transport in stimulus-response coupling are discussed in terms of a new model for ion-channel interaction at the plasma membrane during signalling.Abbreviations [Ca2+]c cytosolic free Ca2+ - I-V current-voltage - E equilibrium potential - Pr red-light-absorbing phytochrome form - Pr far-red-light-absorbing phytochrome form - SPQ 6-methoxy-l-(3-sulphonatopropyl)quinolinium - TEA tetraethylammonium  相似文献   
92.
During sequence analysis of the first intron of the human c-fms oncogene, we identified an open reading frame encoding the ribosomal protein L7 (RPL7). The presence of this sequence within intron 1 of the c-fms gene was confirmed by Southern blot hybridization and by sequence analysis of two independent cosmid clones (cos2-e and cos1-22) that span the human genomic c-fms locus. The RPL7 sequence was detected in a region of sequence overlapped by the cos2-e and cos1-22 cosmid clones but oriented opposite to the c-fms gene. We demonstrated that the sequence is identical to the full-length RPL7 cDNA sequence, but lacks any recognizable introns, has a 30-bp poly(A) tail, and is bracketed by two perfect direct repeats of 14 bp. We also showed that despite the fact that the 5′ flanking region of the RPL7 sequence contains a potential TATA box upstream of an intact open reading frame, this pseudogene (RPL7P) is not actively transcribed.  相似文献   
93.
Staphylococcus epidermidis, a human commensal, is an important opportunistic, biofilm-forming pathogen and the main cause of late onset sepsis in preterm infants, worldwide. In this study we describe the characteristics of S. epidermidis strains causing late onset (>72 h) bloodstream infection in preterm infants and skin isolates from healthy newborns. Attachment and biofilm formation capability were analyzed in microtiter plates and with transmission electron microscopy (TEM). Clonal relationship among strains was studied with pulsed-field gel electrophoresis. Antimicrobial susceptibility testing was performed, as well as the detection of biofilm-associated genes and of the invasiveness marker IS256 with polymerase chain reaction. Blood and skin isolates had similar attachment and biofilm-forming capabilities and biofilm formation was not related to the presence of specific genes. Filament-like membrane structures were seen by TEM early in the attachment close to the device surface, both in blood and skin strains. Nine of the ten blood isolates contained the IS256 and were also resistant to methicillin and gentamicin in contrast to skin strains. S. epidermidis strains causing bloodstream infection in preterm infants exhibit higher antibiotic resistance and are provided with an invasive genetic equipment compared to skin commensal strains. Adhesion capability to a device surface seems to involve bacterial membrane filaments.  相似文献   
94.
Single-stage nitritation–anammox combines the growth of aerobic ammonium-oxidizing bacteria (AOB) and anaerobic ammonium oxidizing bacteria (AnAOB) in one reactor. The necessary compromise of their milieu conditions often leads to the growth of nitrite-oxidizing bacteria (NOB). For this study, a sequencing batch reactor (SBR) for nitritation–anammox was operated for 180 days with sewage sludge reject water (removal capacity, 0.4 kg?N?m?3?day?1). The growth of NOB was favored by enhanced oxygen supply rather than extended aerobic phases. Suspended-type biomass from this SBR was taken regularly and sieved into three size fractions (all of them <1,000 μm). Batch experiments as well as fluorescence in situ hybridization were performed to study the distribution and activity of AnAOB, AOB, and NOB within those size fractions. Both the measured conversion rates and detected abundances decreased with increasing size fraction. The highest anammox conversion rates (15 g NH4 +–N per kilogram VSS per hour) and the highest abundances of Brocadia fulgida were found in the medium size fraction (100–315 μm). The batch experiments proved to be accurate tools for the monitoring of multiple processes in the reactor. The results were representative for reactor performance during the 6 months of reactor operation.  相似文献   
95.
96.
The mucosae of the nasal passages contain a large amount of glands which express secretory proteins as well as phase I and phase II biotransformation enzymes. In this review the metabolic activation, covalent binding and toxicity of chemicals in the Bowman's glands in the olfactory mucosa, in the sero-mucous glands in the nasal septum and in the lateral nasal glands and maxillary glands around the maxillary sinuses are discussed. Light microscopic autoradiographic studies have demonstrated a selective covalent binding of nasal toxicants and carcinogens such as halogenated hydrocarbons and N-nitrosamines, especially in the Bowman's glands following a single systemic exposure, suggesting a high rate of metabolic activation of chemicals in these glands. Special attention is put on the herbicide dichlobenil which induces necrosis in the olfactory mucosa following a cytochrome-P450-mediated metabolic activation and covalent binding in the Bowman's glands.  相似文献   
97.
Purple non-sulphur bacteria (PNSB) are phototrophic microorganisms, which increasingly gain attention in plant production due to their ability to produce and accumulate high-value compounds that are beneficial for plant growth. Remarkable features of PNSB include the accumulation of polyphosphate, the production of pigments and vitamins and the production of plant growth-promoting substances (PGPSs). Scattered case studies on the application of PNSB for plant cultivation have been reported for decades, yet a comprehensive overview is lacking. This review highlights the potential of using PNSB in plant production, with emphasis on three key performance indicators (KPIs): fertilization, resistance to stress (biotic and abiotic) and environmental benefits. PNSB have the potential to enhance plant growth performance, increase the yield and quality of edible plant biomass, boost the resistance to environmental stresses, bioremediate heavy metals and mitigate greenhouse gas emissions. Here, the mechanisms responsible for these attributes are discussed. A distinction is made between the use of living and dead PNSB cells, where critical interpretation of existing literature revealed the better performance of living cells. Finally, this review presents research gaps that remain yet to be elucidated and proposes a roadmap for future research and implementation paving the way for a more sustainable crop production.  相似文献   
98.
Understanding the correlates of immune protection against human immunodeficiency virus and simian immunodeficiency virus (SIV) will require defining the entire cellular immune response against the viruses. Here, we define two novel translation products from the SIV env mRNA that are targeted by the T-cell response in SIV-infected rhesus macaques. The shorter product is a subset of the larger product, which contains both the first exon of the Rev protein and a translated portion of the rev intron. Our data suggest that the translation of viral alternate reading frames may be an important source of T-cell epitopes, including epitopes normally derived from functional proteins.The pathway from viral infection to the cellular immune response is not well understood. Despite the importance of T-cell responses in control of AIDS virus replication (1, 3, 8, 22), the sources of the peptides recognized by virus-specific T cells are still being discovered. AIDS virus-specific CD8+ T lymphocytes (CD8-TL) recognize complexes of major histocompatibility complex (MHC) class I and virus-derived epitopes presented on the surface of infected cells. These epitopes can be derived from exogenous viral proteins in the infecting virion (19, 20) or from de novo synthesis of viral proteins (9, 21). Additional sources of epitopes are also being explored (4, 6).CD8-TL can also recognize epitopes derived from translation of viral alternate reading frames (ARFs). Though CD8-TL specific for ARF-derived epitopes have been detected in human immunodeficiency virus (HIV) (2), they remain a largely unexplored source of epitopes that might elicit potent antiviral cellular immune responses. We recently showed that SIVmac239-infected rhesus macaques that spontaneously controlled viral replication, termed elite controllers, made immunodominant CD8-TL responses against an epitope (RHLAFKCLW, or cRW9) derived from an ARF of the env gene (15). This response selected for viral escape in vivo and suppressed viral replication in an in vitro assay. These findings imply that CD8-TL specific for ARF-derived epitopes might be an important component of the total AIDS virus-specific cellular immune response.Here, we show that the cRW9 epitope is translated as part of two distinct products that differ in size due to start codon usage. The larger and more frequent product contains both the first 23 amino acids of the Rev protein (exon 1) and 50 amino acids translated from the rev intron. The smaller is produced by translation initiation at a start codon within the rev intron and is a subset of the larger product. Finally, we show that these products are degraded after translation from the mature Env-encoding mRNA.  相似文献   
99.
Deficiency of argininosuccinate lyase (ASL) causes argininosuccinic aciduria, an urea cycle defect that may present with a severe neonatal onset form or with a late onset phenotype. To date phenotype-genotype correlations are still not clear because biochemical assays of ASL activity correlate poorly with clinical severity in patients. We employed a yeast-based functional complementation assay to assess the pathogenicity of 12 missense ASL mutations, to establish genotype-phenotype correlations, and to screen for intragenic complementation. Rather than determining ASL enzyme activity directly, we have measured the growth rate in arginine-free medium of a yeast ASLnull strain transformed with individual mutant ASL alleles. Individual haploid strains were also mated to obtain diploid, “compound heterozygous” yeast. We show that the late onset phenotypes arise in patients because they harbor individual alleles retaining high residual enzymatic activity or because of intragenic complementation among different mutated alleles. In these cases complementation occurs because in the hybrid tetrameric enzyme at least one active site without mutations can be formed or because the differently mutated alleles can stabilize each other, resulting in partial recovery of enzymatic activity. Functional complementation in yeast is simple and reproducible and allows the analysis of large numbers of mutant alleles. Moreover, it can be easily adapted for the analysis of mutations in other genes involved in urea cycle disorders.Argininosuccinic aciduria (ASAuria, MIM 207900)3 is an autosomal recessive disorder of the urea cycle caused by mutations of the ASL gene (hASL, MIM 608310), encoding argininosuccinate lyase (ASL; EC 4.3.2.1.) (1). This enzyme is ubiquitously expressed and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. ASL belongs to a superfamily of hydrolases that includes adenylosuccinate lyase and fumarase, which share a homotetrameric structure and a similar catalytic mechanism. The tetrameric structure of ASL accounts for the phenomenon of intragenic complementation. This particular situation occurs when a multimeric protein is formed from subunits produced by differently mutated alleles of the same gene. On complementation, a partially functional hybrid protein is produced from the two distinct types of mutant subunits, neither of which individually has appreciable enzymatic activity (2).ASL participates to the urea cycle, and in humans it is essential for ammonia detoxification, whereas in lower organisms it is required for the biosynthesis of arginine. Saccharomyces cerevisiae strains harboring a deletion of the homolog of human ASL (ARG4) cannot grow on media lacking arginine (3).ASAuria is characterized by accumulation of argininosuccinic acid (ASA) in body fluids, and severe hyperammonaemia. The disease displays clinical heterogeneity with two main clinical phenotypes: the acute/neonatal onset form, with symptoms rapidly progressing to deep coma, apnea, and death (1), and the subacute/late onset type, which is diagnosed in infancy or childhood (4). Such patients may present simply with mental retardation or an epileptic disorder. In both types the diagnosis is established unambiguously by measuring plasma levels of ammonia (not always elevated in the late onset form), ASA, and its anhydrides by plasma amino acids assay (1). Over 40 mutations of the ASL gene have been reported, both amino acid substitutions and truncating variants, which are scattered throughout the gene (5, 6).We have previously reported the identification of novel mutations of the ASL gene in a cohort of Italian patients (7). In this study we employed a yeast model to validate the pathogenicity of missense ASL mutations found in our cohort, to study the effects of different allelic combinations, and to establish possible genotype-phenotype correlations.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号