首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22978篇
  免费   2027篇
  国内免费   24篇
  2023年   112篇
  2022年   253篇
  2021年   559篇
  2020年   298篇
  2019年   393篇
  2018年   478篇
  2017年   428篇
  2016年   698篇
  2015年   1150篇
  2014年   1221篇
  2013年   1534篇
  2012年   1842篇
  2011年   1835篇
  2010年   1130篇
  2009年   982篇
  2008年   1307篇
  2007年   1372篇
  2006年   1235篇
  2005年   1100篇
  2004年   1054篇
  2003年   844篇
  2002年   892篇
  2001年   287篇
  2000年   260篇
  1999年   230篇
  1998年   252篇
  1997年   151篇
  1996年   166篇
  1995年   163篇
  1994年   141篇
  1993年   147篇
  1992年   169篇
  1991年   145篇
  1990年   129篇
  1989年   133篇
  1988年   124篇
  1987年   119篇
  1986年   110篇
  1985年   142篇
  1984年   113篇
  1983年   114篇
  1982年   110篇
  1981年   85篇
  1980年   75篇
  1979年   82篇
  1978年   63篇
  1977年   96篇
  1976年   64篇
  1974年   66篇
  1973年   72篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vλ pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205), expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vλ donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vλ array, and altered the outcome of Vλ diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.  相似文献   
992.
Beta-diversity, the change in species composition between places, is a critical but poorly understood component of biological diversity. Patterns of beta-diversity provide information central to many ecological and evolutionary questions, as well as to conservation planning. Yet beta-diversity is rarely studied across large extents, and the degree of similarity of patterns among taxa at such scales remains untested. To our knowledge, this is the first broad-scale analysis of cross-taxon congruence in beta-diversity, and introduces a new method to map beta-diversity continuously across regions. Congruence between amphibian, bird, and mammal beta-diversity in the Western Hemisphere varies with both geographic location and spatial extent. We demonstrate that areas of high beta-diversity for the three taxa largely coincide, but areas of low beta-diversity exhibit little overlap. These findings suggest that similar processes lead to high levels of differentiation in amphibian, bird, and mammal assemblages, while the ecological and biogeographic factors influencing homogeneity in vertebrate assemblages vary. Knowledge of beta-diversity congruence can help formulate hypotheses about the mechanisms governing regional diversity patterns and should inform conservation, especially as threat from global climate change increases.  相似文献   
993.
Systems allowing tightly regulated expression of prokaryotic genes in vivo are important for performing functional studies of bacterial genes in host-pathogen interactions and establishing bacteria-based therapies. We integrated a regulatory control circuit activated by acetyl salicylic acid (ASA) in attenuated Salmonella enterica that carries an expression module with a gene of interest under control of the XylS2-dependent Pm promoter. This resulted in 20-150-fold induction ex vivo. The regulatory circuit was also efficiently induced by ASA when the bacteria resided in eukaryotic cells, both in vitro and in vivo. To validate the circuit, we administered Salmonella spp., carrying an expression module encoding the 5-fluorocytosine-converting enzyme cytosine deaminase in the bacterial chromosome or in a plasmid, to mice with tumors. Induction with ASA before 5-fluorocytosine administration resulted in a significant reduction of tumor growth. These results demonstrate the usefulness of the regulatory control circuit to selectively switch on gene expression during bacterial infection.  相似文献   
994.
Trade-offs between energy consumption and neuronal performance must shape the design and evolution of nervous systems, but we lack empirical data showing how neuronal energy costs vary according to performance. Using intracellular recordings from the intact retinas of four flies, Drosophila melanogaster, D. virilis, Calliphora vicina, and Sarcophaga carnaria, we measured the rates at which homologous R1–6 photoreceptors of these species transmit information from the same stimuli and estimated the energy they consumed. In all species, both information rate and energy consumption increase with light intensity. Energy consumption rises from a baseline, the energy required to maintain the dark resting potential. This substantial fixed cost, ∼20% of a photoreceptor's maximum consumption, causes the unit cost of information (ATP molecules hydrolysed per bit) to fall as information rate increases. The highest information rates, achieved at bright daylight levels, differed according to species, from ∼200 bits s−1 in D. melanogaster to ∼1,000 bits s−1 in S. carnaria. Comparing species, the fixed cost, the total cost of signalling, and the unit cost (cost per bit) all increase with a photoreceptor's highest information rate to make information more expensive in higher performance cells. This law of diminishing returns promotes the evolution of economical structures by severely penalising overcapacity. Similar relationships could influence the function and design of many neurons because they are subject to similar biophysical constraints on information throughput.  相似文献   
995.
996.
Chromosomal deletions, as a genetic tool for functional genomics, remain underexploited for vertebrate stem cells mostly because presently available methods are too labor-intensive. To address this, we developed and validated a set of complementary retroviruses that creates a wide range of nested chromosomal deletions. When applied to mouse embryonic stem cells (ESCs), this retrovirus-based method yielded deletions ranging from 6 kb to 23 Mb (average 2.9 Mb), with an efficiency of 64% for drug-selected clones. Notably, several of the engineered ESC clones, mostly those with large deletions, showed major alteration in cell fate. In comparison to other methods that have also exploited retroviruses for chromosomal engineering, this modified strategy is more efficient and versatile because it bypasses the need for homologous recombination, and thus can be exploited for rapid and extensive functional screens in embryonic and adult stem cells.  相似文献   
997.
Bringing RNA interference (RNAi) under the control of light will allow the spacing, timing, and degree of gene expression to be controlled. We have previously shown that RNAi by small interfering (si) RNA can be modulated through randomly incorporated photolabile groups. Our and others interest is to find key locations on siRNA that can completely block RNAi until irradiation releases completely active siRNA. Some literature suggests that the 5' phosphate of the antisense strand of siRNA cannot be modified without completely blocking RNAi. We have examined this site as a potential switch for light control of RNAi and present evidence that siRNA modified at the 5' antisense phosphate can still cause RNAi, although not at the level effected by fully native siRNA. This contrasts with results from the literature, which suggest that modification of the 5' antisense phosphate will completely abrogate RNAi in siRNA. We have used mass spectrometry to identify and quantitate possible impurities that may be responsible for residual RNAi and show that they are present at 1% or less. Our results suggest that there is an inherent tolerance of the RNAi machinery toward modification of the 5' antisense phosphate.  相似文献   
998.
999.
1000.
Recent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-alpha(2) activity by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with beta-guanidinopropionic acid (beta-GPA) feeding was also diminished in old rats. These results suggest that aging-associated reductions in AMPK activity may be an important contributing factor in the reduced mitochondrial function and dysregulated intracellular lipid metabolism associated with aging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号