首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11440篇
  免费   865篇
  国内免费   7篇
  12312篇
  2023年   52篇
  2022年   104篇
  2021年   214篇
  2020年   143篇
  2019年   159篇
  2018年   226篇
  2017年   179篇
  2016年   330篇
  2015年   489篇
  2014年   553篇
  2013年   712篇
  2012年   899篇
  2011年   894篇
  2010年   579篇
  2009年   507篇
  2008年   657篇
  2007年   702篇
  2006年   699篇
  2005年   612篇
  2004年   563篇
  2003年   478篇
  2002年   485篇
  2001年   119篇
  2000年   79篇
  1999年   89篇
  1998年   140篇
  1997年   69篇
  1996年   85篇
  1995年   99篇
  1994年   82篇
  1993年   90篇
  1992年   80篇
  1991年   65篇
  1990年   62篇
  1989年   73篇
  1988年   56篇
  1987年   59篇
  1986年   48篇
  1985年   59篇
  1984年   62篇
  1983年   72篇
  1982年   61篇
  1981年   53篇
  1980年   46篇
  1979年   34篇
  1978年   44篇
  1977年   50篇
  1976年   33篇
  1974年   26篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
The epigenetic modification of histones dictates the formation of euchromatin and heterochromatin domains. We studied the effects of a deficiency of histone methyltransferase, SUV39h, and trichostatin A-dependent hyperacetylation on the structural stability of centromeric clusters, called chromocentres. We did not observe the expected disintegration of chromocentres, but both SUV39h deficiency and hyperacetylation in SUV39h+/+ cells induced the re-positioning of chromocentres closer to the nuclear periphery. Conversely, TSA treatment of SUV39h?/? cells re-established normal nuclear radial positioning of chromocentres. This structural re-arrangement was likely caused by several epigenetic events at centromeric heterochromatin. In particular, reciprocal exchanges between H3K9me1, H3K9me2, H3K9me3, DNA methylation, and HP1 protein levels influenced chromocentre nuclear composition. For example, H3K9me1 likely substituted for the function of H3K9me3 in chromocentre nuclear arrangement and compaction. Our results illustrate the important and interchangeable roles of epigenetic marks for chromocentre integrity. Therefore, we propose a model for epigenetic regulation of nuclear stability of centromeric heterochromatin in the mouse genome.  相似文献   
132.
The aim of the present study was the investigation of the occurrence of NADPH-generating pathways in the endoplasmic reticulum others then hexose-6-phosphate dehydrogenase. A significant isocitrate and a moderate malate-dependent NADP+ reduction were observed in endoplasmic reticulum-derived rat liver microsomes. The isocitrate-dependent activity was very likely attributable to the appearance of the cytosolic isocitrate dehydrogenase isozyme in the lumen. The isocitrate dehydrogenase activity of microsomes was present in the luminal fraction; it showed a strong preference towards NADP+versus NAD+, and it was almost completely latent. Antibodies against the cytosolic isoform of isocitrate dehydrogenase immunorevealed a microsomal protein of identical molecular weight; the microsomal enzyme showed similar kinetic parameters and oxalomalate inhibition as the cytosolic one. Measurable luminal isocitrate dehydrogenase activity was also present in microsomes from rat epididymal fat. The results suggest that isocitrate dehydrogenase is an important NADPH-generating enzyme in the endoplasmic reticulum.  相似文献   
133.
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention.  相似文献   
134.
135.
The recently developed CARD-FISH protocol was refined for the detection of marine Archaea by replacing the lysozyme permeabilization treatment with proteinase K. This modification resulted in about twofold-higher detection rates for Archaea in deep waters. Using this method in combination with microautoradiography, we found that Archaea are more abundant than Bacteria (42% versus 32% of 4',6'-diamidino-2-phenylindole counts) in the deep waters of the North Atlantic and that a larger fraction of Archaea than of Bacteria takes up l-aspartic acid (19% versus 10%).  相似文献   
136.
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.Biological membranes are conceptually simple structures that may be generated in vitro according to simple physicochemical principles. In vivo, however, membranes are highly complex and host a plethora of proteins that mediate the transfer of molecules and communication across the membrane. Proteins may be trapped in membrane by their transmembrane domains, anchored by lipid tails, or attach to membrane-integral proteins. A further level of complexity is seen when membrane proteins are not equally distributed but occupy only a limited fraction of the available surface (i.e. when they are polarly localized or when they form small membrane subdomains in the micrometer range). The question of how membrane proteins are retained locally and prevented from diffusing freely is of high importance to cell biology. Polarly localized proteins may be retained in their respective domains by membrane fences; in such a situation, polarly localized proteins are mobile in their domains but cannot diffuse through tightly packed scaffold proteins forming a molecular fence within the membrane. Membrane fences delimiting polar domains have been described in different organisms. For example, diffusion between membrane compartments is prevented in budding yeast (Saccharomyces cerevisiae) at the level of the bud neck (Barral et al., 2000; Takizawa et al., 2000); in ciliated vertebrate cells, between ciliary and periciliary membranes (Hu et al., 2010); in epithelial cells, between apical and basolateral membranes (van Meer and Simons, 1986); in neurons, between axon and soma (Kobayashi et al., 1992; Winckler et al., 1999; Nakada et al., 2003); and in spermatozoa, at the level of the annulus (Myles et al., 1984; Nehme et al., 1993). The existence of membrane scaffolds that prevent free protein diffusion has also been described in bacteria (Baldi and Barral, 2012; Schlimpert et al., 2012). In plants, we have shown the existence of a strict membrane fence in the root endodermis, where a median domain splits the cell in two lateral halves occupied by different sets of proteins (Alassimone et al., 2010). The situation in the plant endodermis is analogous to the separation of animal epithelia into apical and basolateral domains; indeed, a parallel between epithelia and endodermal cells has been drawn, despite the different origin of multicellularity in plants and animals (Grebe, 2011).The protein complexes responsible for the formation of membrane fences have been identified. Septins are a family of proteins able to oligomerize and form filaments (Saarikangas and Barral, 2011); their role in the formation of membrane fences has been demonstrated in several organisms and cellular situations, including the yeast bud neck (Barral et al., 2000; Takizawa et al., 2000), animal cilia (Hu et al., 2010), and mammalian spermatozoa (Ihara et al., 2005; Kissel et al., 2005; Kwitny et al., 2010). At the axonal initial segment of neurons, AnkyrinG is necessary to establish and maintain a membrane scaffold where different membrane proteins are immobilized and stabilized (Hedstrom et al., 2008; Sobotzik et al., 2009). In Caulobacter crescentus, the stalk protein Stp forms a complex that prevents diffusion between the cell body and stalk and between stalk compartments. Claudins and occludin are the main components of epithelial tight junctions (Furuse et al., 1993, 1998). Occludins are four-membrane-span proteins and belong to the MARVEL protein family (Sánchez-Pulido et al., 2002), as do Tricellulin and MARVELD3, which are also tight junction-associated proteins (Furuse et al., 1993; Ikenouchi et al., 2005; Steed et al., 2009).In Arabidopsis (Arabidopsis thaliana), our group identified a family of proteins that form a membrane fence in the endodermis (Roppolo et al., 2011). These CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASP1 to CASP5) are four-transmembrane proteins that form a median domain referred to as the Casparian strip membrane domain (CSD). CASPs are initially targeted to the whole plasma membrane, then they are quickly removed from lateral plasma membranes and remain localized exclusively at the CSD; there, they show an extremely low turnover, although they are eventually removed (Roppolo et al., 2011). The membrane proteins NOD26-LIKE INTRINSIC PROTEIN5;1 and BORON TRANSPORTER1 are restricted from diffusing through the CSD and remain polarly localized in the outer and inner lateral membranes, respectively; a fluorescent lipophilic molecule, when integrated in the outer endodermal membrane, was blocked at the level of the CSD and could not diffuse into the inner membrane (Roppolo et al., 2011). Besides making a plasma membrane diffusion barrier, CASPs have an important role in directing the modification of the cell wall juxtaposing their membrane domain: by interacting with secreted peroxidases, they mediate the deposition of lignin and the building up of the Casparian strips (Roppolo et al., 2011; Naseer et al., 2012; Lee et al., 2013). The two CASP activities, making membrane scaffolds and directing a modification of the cell wall, can be uncoupled: indeed, (1) formation of the CASP domain is independent from the deposition of lignin, and (2) interaction between CASPs and peroxidases can take place outside the CSD when CASPs are ectopically expressed (Lee et al., 2013).As CASPs are currently the only known proteins forming membrane fences in plants and because of their essential role in directing a local cell wall modification, we were interested in characterizing the repertoire of a large number of CASP-like (CASPL) proteins in the plant kingdom. Our aim was to provide the molecular basis for the discovery of additional membrane domains in plants and for the identification of proteins involved in local cell wall modifications. We extended our phylogenetic analysis outside of the plant kingdom and found conservation between CASPLs and the MARVEL protein family. Conserved residues are located in transmembrane domains, and we provide evidence suggesting that these domains are involved in CASP localization. We explored the potential use of the CASPL module in plants by investigating CASPL expression patterns and their ability to form membrane domains in the endodermis. Moreover, we related the appearance of the Casparian strips in the plant kingdom to the emergence of a CASP-specific signature that was not found in the genomes of plants lacking Casparian strips.  相似文献   
137.
The innate immune system critically shapes diabetogenic adaptive immunity during type 1 diabetes (T1D) pathogenesis. While the role of tissue-infiltrating monocyte-derived macrophages in T1D is well established, the role of their tissue-resident counterparts remains undefined. We now demonstrate that islet resident macrophages (IRMs) from non-autoimmune mice have an immunoregulatory phenotype and powerfully induce FoxP3+ Tregs in vitro. The immunoregulatory phenotype and function of IRMs is compromised by TLR4 activation in vitro. Moreover, as T1D approaches in NOD mice, the immunoregulatory phenotype of IRMs is diminished as is their relative abundance compared to immunostimulatory DCs. Our findings suggest that maintenance of IRM abundance and their immunoregulatory phenotype may constitute a novel therapeutic strategy to prevent and/or cure T1D.  相似文献   
138.

Background  

High-throughput protein structure analysis of individual protein domains requires analysis of large numbers of expression clones to identify suitable constructs for structure determination. For this purpose, methods need to be implemented for fast and reliable screening of the expressed proteins as early as possible in the overall process from cloning to structure determination.  相似文献   
139.
Cyclooxygenase 2 (COX-2) inhibitors have been shown to enhance tumor''s response to radiation in several animal models. The strong association of COX-2 and angiogenesis suggests that the tumor vasculature may be involved in this process. The current study investigated whether treatment with the COX-2 inhibitor E-6087 could influence response to local radiation in orthotopically growing murine gliomas and aimed to analyze the involvement of the tumor vasculature. GL261 glioma cells were injected into the cerebrum of C57bl/6 mice. From day 7 after tumor cell injection, mice were treated with COX-2 inhibitor at 50 mg/kg i.p. every third day. Radiation consisted of three fractions of 2 Gy given daily from day 9 to day 11. Mice were killed at day 21. The COX-2 inhibitor significantly enhanced the response to radiation, reducing mean volume to 32% of tumors treated with radiation only. The combination treatment neither increased apoptosis of tumor cells or stromal cells nor affected tumor microvascular density. In vitro, E-6087 and its active metabolite did not affect clonogenic survival of GL261 cells or human umbilical vein endothelial cell after radiation. In vivo, however, there was a nonsignificant increase in Angiopoietin (Ang)-1 and Tie-2 mRNA levels and a decrease of Ang-2 mRNA levels after combination treatment. These changes coincided with a significant increase in α-smooth muscle actin-positive pericyte coverage of tumor vessels. In conclusion, the antitumor effect of radiation on murine intracranial glioma growth is augmented by combining with COX-2 inhibition. Our findings suggest an involvement of the tumor vasculature in the observed effects.  相似文献   
140.
Storage proteins of the seeds (cotyledons) of the South-American speciesPhaseolus caracalla were compared by means of immunoelectrophoretic methods with other representatives of the genusPhaseolus. These proteins most resemble the proteins of the co-called tropical group (i.e. Ph. atropurpureus, Ph. geophilus, Ph. bracteatus, Ph. semierectus) and least the so-called American endemites (Ph. vulgaris, Ph. coccineus, Ph. acutifolius, Ph. lunatus), the main globulin of which is of a completely different specificity. The proteins ofPh. caracalla are less similar to the group of the so-called Asiatic species (Ph. aureus, Ph. calcaratus, Ph. angularis, Ph. aconitifolius, Ph. trilobus) including the analyzed representatives ofVigna sinensis; their main globulin is only partly similar to that ofPh. caracalla. Some considerations on the relationship ofPh. caracalla with the so-called tropical species is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号