首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8463篇
  免费   610篇
  国内免费   5篇
  2023年   37篇
  2022年   90篇
  2021年   195篇
  2020年   130篇
  2019年   123篇
  2018年   181篇
  2017年   149篇
  2016年   282篇
  2015年   401篇
  2014年   463篇
  2013年   571篇
  2012年   693篇
  2011年   713篇
  2010年   441篇
  2009年   379篇
  2008年   495篇
  2007年   515篇
  2006年   505篇
  2005年   417篇
  2004年   382篇
  2003年   302篇
  2002年   334篇
  2001年   77篇
  2000年   55篇
  1999年   59篇
  1998年   90篇
  1997年   36篇
  1996年   51篇
  1995年   52篇
  1994年   50篇
  1993年   48篇
  1992年   40篇
  1991年   40篇
  1990年   32篇
  1989年   36篇
  1988年   33篇
  1987年   45篇
  1986年   31篇
  1985年   39篇
  1984年   39篇
  1983年   47篇
  1982年   37篇
  1981年   35篇
  1980年   23篇
  1979年   23篇
  1978年   19篇
  1977年   35篇
  1976年   20篇
  1974年   16篇
  1973年   16篇
排序方式: 共有9078条查询结果,搜索用时 421 毫秒
921.
Leptin and cancer   总被引:8,自引:0,他引:8  
The prevalence of obesity has markedly increased over the past two decades, especially in the industrialized countries. While the impact of excess body weight on the development of cardiac disease and diabetes has been well documented, the link between obesity and carcinogenesis is just being recognized. This review will focus on the link between leptin, a cytokine that is elevated in obese individuals, and cancer development. First, we briefly discuss the biological functions of leptin and its signaling pathways. Then, we summarize the effects of leptin on different cancer types in experimental cellular and animal models. Next, we analyze epidemiological data on the relationship between obesity and the presence of cancer or cancer risk in patients. Finally, leptin as a target for cancer treatment and prevention will be discussed.  相似文献   
922.
A microbial polysaccharide (glucuronoxylomannan (GXM)) exerts potent immunosuppression by direct engagement to immunoinhibitory receptor FcgammaRIIB. Activation of FcgammaRIIB by GXM leads to the recruitment and phosphorylation of SHIP that prevents IkappaBalpha activation. The FcgammaRIIB blockade inhibits GXM-induced IL-10 production and induces TNF-alpha secretion. GXM quenches LPS-induced TNF-alpha release via FcgammaRIIB. The addition of mAb to GXM reverses GXM-induced immunosuppression by shifting recognition from FcgammaRIIB to FcgammaRIIA. These findings indicate a novel mechanism by which microbial products can impair immune function through direct stimulation of an inhibitory receptor. Furthermore, our observations provide a new mechanism for the ability of specific Ab to reverse the immune inhibitory effects of certain microbial products.  相似文献   
923.
924.
Nerve growth factor (NGF) promotes proliferation via its high affinity receptor (TrkA). Its precursor proNGF promotes apoptosis via the pan-neurotrophin-receptor p75. Recently, we have identified NGF and p75 as important hair growth terminators. However, if proNGF is involved or if NGF can also promote hair growth via TrkA is unclear. By RT-PCR we found that NGF/proNGF mRNA levels peak during early anagen in murine back skin, whereas NGF/proNGF protein levels peak during catagen, indicating high turnover in early anagen and protein accumulation in catagen. By immunohistochemistry, NGF and TrkA are found in the proliferating compartments of the epidermis and hair follicle throughout the cycle. In contrast, strong proNGF is found in the highly differentiated inner root sheath and adjacent to the p75+ regressing epithelial strand in catagen. Commercial 7S NGF, which contains both NGF and proNGF, promotes anagen development in organ-cultured early anagen mouse skin, whereas it promotes catagen development in late anagen skin. Together, our findings suggest an anagen-promoting or anagen-supporting role for NGF/TrkA, and a catagen-promoting role for proNGF/p75 interactions. This has important implications for the future design of specific neurotrophin receptor ligands as novel pharmaceuticals in the modification of tissue remodeling processes such as hair growth or wound healing.  相似文献   
925.
The requirement for costimulation in antiviral CD8+ T cell responses has been actively investigated for acutely resolved viral infections, but it is less defined for CD8+ T cell responses to persistent virus infection. Using mouse polyoma virus (PyV) as a model of low-level persistent virus infection, we asked whether blockade of the CD40 ligand (CD40L) and CD28 costimulatory pathways impacts the magnitude and function of the PyV-specific CD8+ T response, as well as the humoral response and viral control during acute and persistent phases of infection. Costimulation blockade or gene knockout of either CD28 or CD40L substantially dampened the magnitude of the acute CD8+ T cell response; simultaneous CD28 and CD40L blockade severely depressed the acute T cell response, altered the cell surface phenotype of PyV-specific CD8+ T cells, decreased PyV VP1-specific serum IgG titers, and resulted in an increase in viral DNA levels in multiple organs. CD28 and CD40L costimulation blockade during acute infection also diminished the memory PyV-specific CD8+ T cell response and serum IgG titer, but control of viral persistence varied between mouse strains and among organs. Interestingly, we found that CD28 and CD40L costimulation is dispensable for generating and/or maintaining PyV-specific CD8+ T cells during persistent infection; however, blockade of CD27 and CD28 costimulation in persistently infected mice caused a reduction in PyV-specific CD8+ T cells. Taken together, these data indicate that CD8+ T cells primed within the distinct microenvironments of acute vs persistent virus infection differ in their costimulation requirements.  相似文献   
926.
In vitro analyses of type I signal peptidase activities require protein precursors as substrates. Usually, these pre-proteins are expressed in vitro and cleavage of the signal sequence is followed by SDS polyacrylamide gel electrophoresis coupled with autoradiography. Radioactive amino acids have to be incorporated in the expressed protein, since the amount of the in vitro expressed protein is usually very low and processing of the signal peptide cannot be followed by SDS polyacrylamide gel electrophoresis alone. Here we describe a rapid and simple method to express large amounts of a protein precursor in E. coli. We have analyzed the effect of ionophors as well as of azide on the accumulation of expressed protein precursors. Azide blocks the function of SecA and the ionophors dissipate the electrochemical gradient across the cytoplasmic membrane of E. coli. Addition of azide ions resulted in the formation of inclusion bodies, highly enriched with pre-apo-plastocyanine. Plastocyanine is a soluble copper protein, which can be found in the periplasmic space of cyanobacteria as well as in the thylakoid lumen of cyanobacteria and chloroplasts, and the pre-protein contains a cleavable signal sequence at its N-terminus. After purification of cyanobacterial preapo-plastocyanine, its signal sequence can be cleaved off by the E. coli signal peptidase, and protein processing was followed on Coomassie stained SDS polyacrylamide gels. We are optimistic that the presented method can be further developed and applied.  相似文献   
927.
The EBV carrier state is almost general in men. The virus induces B lymphocyte proliferation in vitro, but this is counteracted in vivo by the immune response. Therefore, EBV-induced malignancies occur only when the immune response is impaired, e.g. in transplant recipients. The versatility of the viral gene expression strategy secures the consistent maintainance of the virus in healthy individuals. The viral proteins required for transformation render the cell immunogenic. Expression of the transforming genes leads to rejection, but these genes are not required for the maintenance of the viral genome. EBV is an important contributor for malignant transformation, even when it does not directly induce cell proliferation. Several mechanisms have been unravelled in EBV-associated tumors whereby the virus may modify the cellular phenotype and may influence the interaction of tumor cells with their microenvironment. The virus carrier state can lead to the evasion of apoptosis and can intensify the response to growth promoting signals, too.  相似文献   
928.
The blood-brain barrier contributes to maintain brain cholesterol metabolism and protects this uniquely balanced system from exchange with plasma lipoprotein cholesterol. Brain capillary endothelial cells, representing a physiological barrier to the central nervous system, express apolipoprotein A-I (apoA-I, the major high-density lipoprotein (HDL)-associated apolipoprotein), ATP-binding cassette transporter A1 (ABCA1), and scavenger receptor, class B, type I (SR-BI), proteins that promote cellular cholesterol mobilization. Liver X receptors (LXRs) and peroxisome-proliferator activated receptors (PPARs) are regulators of cholesterol transport, and activation of LXRs and PPARs has potential therapeutic implications for lipid-related neurodegenerative diseases. To clarify the functional impact of LXR/PPAR activation, sterol transport along the: (i) ABCA1/apoA-I and (ii) SR-BI/HDL pathway was investigated in primary, polarized brain capillary endothelial cells, an in vitro model of the blood-brain barrier. Activation of LXR (24(S)OH-cholesterol, TO901317), PPARalpha (bezafibrate, fenofibrate), and PPARgamma (troglitazone, pioglitazone) modulated expression of apoA-I, ABCA1, and SR-BI on mRNA and/or protein levels without compromising transendothelial electrical resistance or tight junction protein expression. LXR-agonists and troglitazone enhanced basolateral-to-apical cholesterol mobilization in the absence of exogenous sterol acceptors. Along with the induction of cell surface-located ABCA1, several agonists enhanced cholesterol mobilization in the presence of exogenous apoA-I, while efflux of 24(S)OH-cholesterol (the major brain cholesterol metabolite) in the presence of exogenous HDL remained unaffected. Summarizing, in cerebrovascular endothelial cells apoA-I, ABCA1, and SR-BI represent drug targets for LXR and PPAR-agonists to interfere with cholesterol homeostasis at the periphery of the central nervous system.  相似文献   
929.
930.
A carbohydrate binding module, CBM4-2, derived from the xylanase (Xyn 10A) of Rhodothermus marinus has been used as a scaffold for molecular diversification. Its binding specificity has been evolved to recognise a quite different target, a human monoclonal IgG4. In order to understand the basis for this drastic change in specificity we have further investigated the target recognition of the IgG4-specific CBMs. Firstly, we defined that the structure target recognised by the selected CBM-variants was the protein and not the carbohydrates attached to the glycoprotein. We also identified key residues involved in the new specificity and/or responsible for the swap in specificity, from xylan to human IgG4. Specific changes present in all these CBMs included mutations not introduced in the design of the library from which the specific clones were selected. Reversion of such mutations led to a complete loss of binding to the target molecule, suggesting that they are critical for the recognition of human IgG4. Together with the mutations introduced at will, they had transformed the CBM scaffold into a protein binder. We have thus shown that the scaffold of CBM4-2 is able to harbour molecular recognition for either carbohydrate or protein structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号