首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8442篇
  免费   610篇
  国内免费   5篇
  9057篇
  2023年   43篇
  2022年   93篇
  2021年   195篇
  2020年   130篇
  2019年   123篇
  2018年   181篇
  2017年   149篇
  2016年   281篇
  2015年   401篇
  2014年   461篇
  2013年   570篇
  2012年   693篇
  2011年   712篇
  2010年   439篇
  2009年   379篇
  2008年   495篇
  2007年   515篇
  2006年   504篇
  2005年   417篇
  2004年   382篇
  2003年   302篇
  2002年   333篇
  2001年   77篇
  2000年   55篇
  1999年   58篇
  1998年   89篇
  1997年   36篇
  1996年   51篇
  1995年   52篇
  1994年   49篇
  1993年   48篇
  1992年   40篇
  1991年   40篇
  1990年   32篇
  1989年   36篇
  1988年   32篇
  1987年   43篇
  1986年   29篇
  1985年   39篇
  1984年   36篇
  1983年   46篇
  1982年   34篇
  1981年   35篇
  1980年   23篇
  1979年   23篇
  1978年   19篇
  1977年   34篇
  1976年   20篇
  1973年   14篇
  1964年   14篇
排序方式: 共有9057条查询结果,搜索用时 15 毫秒
151.
The liver has an extraordinary regenerative capacity rapidly triggered upon injury or resection. This response is intrinsically adjusted in its initiation and termination, a property termed the “hepatostat”. Several molecules have been involved in liver regeneration, and among them bile acids may play a central role. Intrahepatic levels of bile acids rapidly increase after resection. Through the activation of farnesoid X receptor (FXR), bile acids regulate their hepatic metabolism and also promote hepatocellular proliferation. FXR is also expressed in enterocytes, where bile acids stimulate the expression of fibroblast growth factor 15/19 (FGF15/19), which is released to the portal blood. Through the activation of FGFR4 on hepatocytes FGF15/19 regulates bile acids synthesis and finely tunes liver regeneration as part of the “hepatostat”. Here we review the experimental evidences supporting the relevance of the FXR-FGF15/19-FGFR4 axis in liver regeneration and discuss potential therapeutic applications of FGF15/19 in the prevention of liver failure. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   
152.
153.
154.
Could glucose be a proaging factor?   总被引:1,自引:0,他引:1  
There is an ever-increasing scientific interest for the interplay between cell's environment and the aging process. Although it is known that calorie restriction affects longevity, the exact molecular mechanisms through which nutrients influence various cell signalling/modulators of lifespan remain a largely unresolved issue. Among nutrients, glucose constitutes an evolutionarily stable, precious metabolic fuel, which is catabolized through glycolytic pathway providing energy in the form of ATP and consuming NAD. Accumulating evidence shows that among the important regulators of aging process are autophagy, sirtuin activity and oxidative stress. In light of recent work indicating that glucose availability decreases lifespan whilst impaired glucose metabolism extends life expectancy, the present article deals with the potential role of glucose in the aging process by regulating - directly through its metabolism or indirectly through insulin secretion - autophagy, sirtuins as well as other modulators of aging like oxidative stress and advanced glycation end-products (AGEs).  相似文献   
155.
BACKGROUND: The centrosome is composed of a centriole pair and pericentriolar material (PCM). By marking the site of PCM assembly, the centrioles define the number of centrosomes present in the cell. The PCM, in turn, is responsible for the microtubule (MT) nucleation activity of centrosomes. Therefore, in order to assemble a functional bipolar mitotic spindle, a cell needs to control both centriole duplication and PCM recruitment. To date, however, the molecular mechanisms that govern these two processes still remain poorly understood. RESULTS: Here we show that SPD-2 is a novel component of the C. elegans centrosome. SPD-2 localizes to the centriole throughout the cell cycle and accumulates on the PCM during mitosis. We show that SPD-2 requires SPD-5 for its accumulation on the PCM and that in the absence of SPD-2, centrosome assembly fails. We further show that centriole duplication is also defective in spd-2(RNAi) embryos, but not in spd-5(RNAi) embryos, where PCM recruitment is efficiently blocked. CONCLUSIONS: Taken together, our results suggest that SPD-2 may link PCM recruitment and centriole duplication in C. elegans. SPD-2 shares homology with a human centrosome protein, suggesting that this key component of the C. elegans centrosome is evolutionarily conserved.  相似文献   
156.
Plant-based production of biopharmaceuticals   总被引:15,自引:0,他引:15  
Plants are now gaining widespread acceptance as a general platform for the large-scale production of recombinant proteins. The first plant-derived recombinant pharmaceutical proteins are reaching the final stages of clinical evaluation, and many more are in the development pipeline. Over the past two years, there have been some notable technological advances in this flourishing area of applied biotechnology, as shown by the continuing commercial development of novel plant-based expression platforms. There has also been significant success in tackling some of the limitations of plant bioreactors, such as low yields and inconsistent product quality, that have limited the approval of plant-derived pharmaceuticals.  相似文献   
157.
Translocation of twin-arginine precursor proteins across the cytoplasmic membrane of Escherichia coli requires the three membrane proteins TatA, TatB, and TatC. TatC and TatB were shown to be involved in precursor binding. We have analyzed in vitro a number of single alanine substitutions in tatC that were previously shown to compromise in vivo the function of the Tat translocase. All tatC mutants that were defective in precursor translocation into cytoplasmic membrane vesicles concomitantly interfered with precursor binding not only to TatC but also to TatB. Hence structural changes of TatC that affect precursor targeting simultaneously abolish engagement of the twin-arginine signal sequence with TatB and block the formation of a functional Tat translocase. Since these phenotypes were observed for tatC mutations spread over the first half of TatC, this entire part of the molecule must globally be involved in precursor binding.  相似文献   
158.
RNA-binding proteins (RBPs) have been relatively overlooked in cancer research despite their contribution to virtually every cancer hallmark. Here, we use RNA interactome capture (RIC) to characterize the melanoma RBPome and uncover novel RBPs involved in melanoma progression. Comparison of RIC profiles of a non-tumoral versus a metastatic cell line revealed prevalent changes in RNA-binding capacities that were not associated with changes in RBP levels. Extensive functional validation of a selected group of 24 RBPs using five different in vitro assays unveiled unanticipated roles of RBPs in melanoma malignancy. As proof-of-principle we focused on PDIA6, an ER-lumen chaperone that displayed a novel RNA-binding activity. We show that PDIA6 is involved in metastatic progression, map its RNA-binding domain, and find that RNA binding is required for PDIA6 tumorigenic properties. These results exemplify how RIC technologies can be harnessed to uncover novel vulnerabilities of cancer cells.  相似文献   
159.
Laboratory analysis of basic cerebrospinal fluid (CSF) parameters is considered as essential for any CSF evaluation. It can provide rapidly very valuable information about the status of the central nervous system (CNS). Our retrospective study evaluated parameters of basic CSF analysis in cases of either infectious or non-infectious CNS involvement. Neutrophils are effector cells of innate immunity. Predominance of neutrophils was found in 98.2% of patients with purulent inflammation in CNS. Lymphocytes are cellular substrate of adaptive immunity. We found their predominance in 94.8% of patients with multiple sclerosis (MS), 66.7% of patients with tick-borne encephalitis (TBE), 92.2% of patients with neuroborreliosis, 83.3% of patients with inflammatory response with oxidative burst of macrophages in CNS and 75.0% of patients with malignant infiltration of meninges (MIM). The simultaneous assessment of aerobic and anaerobic metabolism in CSF using the coefficient of energy balance (KEB) allows us to specify the type of inflammation in CNS. We found predominantly aerobic metabolism (KEB > 28.0) in 100.0% CSF of patients with normal CSF findings and in 92.8% CSF of patients with MS. Predominant faintly anaerobic metabolism (28.0 > KEB > 20.0) in CSF was found in 71.8% patients with TBE and in 64.7% patients with neuroborreliosis. Strong anaerobic metabolism (KEB < 10.0) was found in the CSF of 99.1% patients with purulent inflammation, 100.0% patients with inflammatory response with oxidative burst of macrophages and in 80.6% patients with MIM. Joint evaluation of basic CSF parameters provides sufficient information about the immune response in the CSF compartment for rapid and reliable diagnosis of CNS involvement.  相似文献   
160.
The cuticle is a protective extracellular matrix that covers the above-ground epidermis of land plants. Here, we studied the cuticle of tomato (Solanum lycopersicum L.) fruits in situ using confocal Raman microscopy. Microsections from cuticles isolated at different developmental stages were scanned to visualize cuticle components with a spatial resolution of 342 nm by univariate and multivariate data analysis. Three main components, cutin, polysaccharides, and aromatics, were identified, with the latter exhibiting the strongest Raman scattering intensity. Phenolic acids and flavonoids were differentiated within the cuticle, and three schematic cuticle models were identified during development. Phenolic acids were found across the entire cuticle at the earliest stage of development, i.e. during the formation of the procuticle layer. Based on a mixture analysis with reference component spectra, the phenolic acids were identified as mainly esterified p-coumaric acid together with free p-hydroxybenzoic acid. During the cell expansion period of growth, phenolic acids accumulated in an outermost layer of the cuticle and in the middle region of the pegs. In these stages of development, cellulose and pectin were detected next to the inner cuticle region, close to the epidermal cell where flavonoid impregnation started during ripening. In the first ripening stage, chalconaringenin was observed, while methoxylated chalcones were chosen by the algorithm to fit the mature cuticle spectra. The colocation of carbohydrates, esterified p-coumaric acid, and methoxylated chalconaringenin suggests that the latter two link polysaccharide and cutin domains. Elucidating the different distribution of aromatics within the cuticle, suggests important functions: (1) overall impregnation conferring mechanical and thermal functions (2) the outermost phenolic acid layer displaying UV-B protection of the plant tissue.

Raman mapping and multivariate data analysis provide insights into the distribution of cutin, carbohydrates, and phenolics along cross sections of green and mature tomato fruit cuticles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号