首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70565篇
  免费   17968篇
  国内免费   21篇
  2023年   242篇
  2022年   608篇
  2021年   1468篇
  2020年   2732篇
  2019年   4365篇
  2018年   4777篇
  2017年   4857篇
  2016年   5491篇
  2015年   6208篇
  2014年   6041篇
  2013年   7336篇
  2012年   5655篇
  2011年   5232篇
  2010年   5267篇
  2009年   3730篇
  2008年   3467篇
  2007年   3033篇
  2006年   2757篇
  2005年   2507篇
  2004年   2359篇
  2003年   2208篇
  2002年   2061篇
  2001年   623篇
  2000年   451篇
  1999年   481篇
  1998年   468篇
  1997年   295篇
  1996年   305篇
  1995年   292篇
  1994年   285篇
  1993年   271篇
  1992年   182篇
  1991年   189篇
  1990年   180篇
  1989年   151篇
  1988年   135篇
  1987年   135篇
  1986年   100篇
  1985年   136篇
  1984年   135篇
  1983年   124篇
  1982年   118篇
  1981年   119篇
  1980年   103篇
  1979年   98篇
  1978年   60篇
  1977年   83篇
  1976年   58篇
  1975年   55篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 593 毫秒
971.
Understanding how biodiversity and interaction networks change across environmental gradients is a major challenge in ecology. We integrated metacommunity and metanetwork perspectives to test species’ functional roles in bird–plant frugivory interactions in a fragmented forest landscape in Southwest China, with consequences for seed dispersal. Availability of fruit resources both on and under trees created vertical feeding stratification for frugivorous birds. Bird–plant interactions involving birds feeding only on‐the‐tree or both on and under‐the‐tree (shared) had a higher centrality and contributed more to metanetwork organisation than interactions involving birds feeding only under‐the‐tree. Moreover, bird–plant interactions associated with large‐seeded plants disproportionately contributed to metanetwork organisation and centrality. Consequently, on‐the‐tree and shared birds contributed more to metanetwork organisation whereas under‐the‐tree birds were more involved in local processes. We would expect that species’ roles in the metanetwork will translate into different conservation values for maintaining functioning of seed‐dispersal networks.  相似文献   
972.
Surveillance for maintaining genomic pristineness, a protective safeguard of great onco‐preventive significance, has been dedicated in eukaryotic cells to a highly conserved and synchronised signalling cascade called DNA damage response (DDR). Not surprisingly, foreign genetic elements like those of viruses are often potential targets of DDR. Viruses have evolved novel ways to subvert this genome vigilance by twisting canonical DDR to a skewed, noncanonical response through selective hijacking of some DDR components while antagonising the others. Though reported for many DNA and a few RNA viruses, potential implications of DDR have not been addressed yet in case of infection with rotavirus (RV), a double‐stranded RNA virus. In the present study, we aimed at the modulation of ataxia telangiectasia mutated (ATM)‐checkpoint kinase 2 (Chk2) branch of DDR in response to RV infection in vitro. We found activation of the transducer kinase ATM and its downstream effector Chk2 in RV‐SA11‐infected cells, the activation response being maximal at 6‐hr post infection. Moreover, ATM activation was found to be dependent on induction of the upstream sensor Mre11‐Rad50‐Nbs1 (MRN) complex. Interestingly, RV‐SA11‐mediated maximal induction of ATM‐Chk2 pathway was revealed to be neither preceded by occurrence of nuclear DNA damage nor transduced to formation of damage‐induced canonical nuclear foci. Subsequent investigations affirmed sequestration of MRN components as well as ATM‐Chk2 proteins away from nucleus into cytosolic RV replication factories (viroplasms). Chemical intervention targeting ATM and Chk2 significantly inhibited fusion and maturation of viroplasms leading to attenuated viral propagation. Cumulatively, the current study describes RV‐mediated activation of a noncanonical ATM‐Chk2 branch of DDR skewed in favour of facilitated viroplasm fusion and productive viral perpetuation.  相似文献   
973.
Campylobacter jejuni is a bacterial pathogen that is generally acquired as a zoonotic infection from poultry and animals. Adhesion of C. jejuni to human colorectal epithelial cells is weakened after loss of its cj0588 gene. The Cj0588 protein belongs to the type I group of TlyA (TlyAI) enzymes, which 2′‐O‐methylate nucleotide C1920 in 23S rRNA. Slightly longer TlyAII versions of the methyltransferase are found in actinobacterial species including Mycobacterium tuberculosis, and methylate not only C1920 but also nucleotide C1409 in 16S rRNA. Loss of TlyA function attenuates virulence of both M. tuberculosis and C. jejuni. We show here that the traits impaired in C. jejuni null strains can be rescued by complementation not only with the original cj0588 (tlyA I) but also with a mycobacterial tlyA II gene. There are, however, significant differences in the recombinant phenotypes. While cj0588 restores motility, biofilm formation, adhesion to and invasion of human epithelial cells and stimulation of IL‐8 production in a C. jejuni null strain, several of these properties are further enhanced by the mycobacterial tlyA II gene, in some cases to twice the original wild‐type level. These findings strongly suggest that subtle changes in rRNA modification patterns can affect protein synthesis in a manner that has serious consequences for bacterial pathogenicity.  相似文献   
974.
Mixed‐species animal groups (MSGs) are widely acknowledged to increase predator avoidance and foraging efficiency, among other benefits, and thereby increase participants' fitness. Diversity in MSG composition ranges from two to 70 species of very similar or completely different phenotypes. Yet consistency in organization is also observable in that one or a few species usually have disproportionate importance for MSG formation and/or maintenance. We propose a two‐dimensional framework for understanding this diversity and consistency, concentrating on the types of interactions possible between two individuals, usually of different species. One axis represents the similarity of benefit types traded between the individuals, while the second axis expresses asymmetry in the relative amount of benefits/costs accrued. Considering benefit types, one extreme represents the case of single‐species groups wherein all individuals obtain the same supplementary, group‐size‐related benefits, and the other extreme comprises associations of very different, but complementary species (e.g. one partner creates access to food while the other provides vigilance). The relevance of social information and the matching of activities (e.g. speed of movement) are highest for relationships on the supplementary side of this axis, but so is competition; relationships between species will occur at points along this gradient where the benefits outweigh the costs. Considering benefit amounts given or received, extreme asymmetry occurs when one species is exclusively a benefit provider and the other a benefit user. Within this parameter space, some MSG systems are constrained to one kind of interaction, such as shoals of fish of similar species or leader–follower interactions in fish and other taxa. Other MSGs, such as terrestrial bird flocks, can simultaneously include a variety of supplementary and complementary interactions. We review the benefits that species obtain across the diversity of MSG types, and argue that the degree and nature of asymmetry between benefit providers and users should be measured and not just assumed. We then discuss evolutionary shifts in MSG types, focusing on drivers towards similarity in group composition, and selection on benefit providers to enhance the benefits they can receive from other species. Finally, we conclude by considering how individual and collective behaviour in MSGs may influence both the structure and processes of communities.  相似文献   
975.
976.
977.
Grain size and plant architecture are critical factors determining crop productivity. Here, we performed gene editing of the MIR396 gene family in rice and found that MIR396e and MIR396f are two important regulators of grain size and plant architecture. mir396ef mutations can increase grain yield by increasing grain size. In addition, mir396ef mutations resulted in an altered plant architecture, with lengthened leaves but shortened internodes, especially the uppermost internode. Our research suggests that mir396ef mutations promote leaf elongation by increasing the level of a gibberellin (GA) precursor, mevalonic acid, which subsequently promotes GA biosynthesis. However, internode elongation in mir396ef mutants appears to be suppressed via reduced CYP96B4 expression but not via the GA pathway. This research provides candidate gene‐editing targets to breed elite rice varieties.  相似文献   
978.
Staphylococcus aureus is a facultative intracellular pathogen. Recently, it has been shown that the protein part of the lipoprotein‐like lipoproteins (Lpls), encoded by the lpl cluster comprising of 10 lpls paralogue genes, increases pathogenicity, delays the G2/M phase transition, and also triggers host cell invasion. Here, we show that a recombinant Lpl1 protein without the lipid moiety binds directly to the isoforms of the human heat shock proteins Hsp90α and Hsp90ß. Synthetic peptides covering the Lpl1 sequence caused a twofold to fivefold increase of S. aureus invasion in HaCaT cells. Antibodies against Hsp90 decrease S. aureus invasion in HaCaT cells and in primary human keratinocytes. Additionally, inhibition of ATPase function of Hsp90 or silencing Hsp90α expression by siRNA also decreased the S. aureus invasion in HaCaT cells. Although the Hsp90ß is constitutively expressed, the Hsp90α isoform is heat‐inducible and appears to play a major role in Lpl1 interaction. Pre‐incubation of HaCaT cells at 39°C increased both the Hsp90α expression and S. aureus invasion. Lpl1‐Hsp90 interaction induces F‐actin formation, thus, triggering an endocytosis‐like internalisation. Here, we uncovered a new host cell invasion principle on the basis of Lpl‐Hsp90 interaction.  相似文献   
979.
The host‐microbe relationship is pivotal for oral health as well as for peri‐implant diseases. Peri‐implant mucosa and commensal biofilm play important roles in the maintenance of host‐microbe homeostasis, but little is known about how they interact. We have therefore investigated the early host‐microbe interaction between commensal multispecies biofilm (Streptococcus oralis, Actinomyces naeslundii, Veillonella dispar, Porphyromonas gingivalis) and organotypic peri‐implant mucosa using our three‐dimensional model. After 24 hr, biofilms induced weak inflammatory reaction in the peri‐implant mucosa by upregulation of five genes related to immune response and increased secretion of IL‐6 and CCL20. Biofilm volume was reduced which might be explained by secretion of β‐Defensins‐1, ‐2, and CCL20. The specific tissue reaction without intrinsic overreaction might contribute to intact mucosa. Thus, a relationship similar to homeostasis and oral health was established within the first 24 hr. In contrast, the mucosa was damaged and the bacterial distribution was altered after 48 hr. These were accompanied by an enhanced immune response with upregulation of additional inflammatory‐related genes and increased cytokine secretion. Thus, the homeostasis‐like relationship was disrupted. Such profound knowledge of the host‐microbe interaction at the peri‐implant site may provide the basis to improve strategies for prevention and therapy of peri‐implant diseases.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号