首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   8篇
  2022年   3篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   3篇
  2014年   8篇
  2013年   19篇
  2012年   20篇
  2011年   7篇
  2010年   15篇
  2009年   5篇
  2008年   10篇
  2007年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
排序方式: 共有114条查询结果,搜索用时 31 毫秒
51.
52.
Piscidin-1 (Pis-1) is a linear antibacterial peptide derived from mast cells of aquacultured hybrid striped bass that comprises 22 amino acids with a phenylalanine-rich amino-terminus. Pis-1 exhibits potent antibacterial activity against pathogens but is not selective for distinguishing between bacterial and mammalian cells. To determine the key residues for its antibacterial activity and those for its cytotoxicity, we investigated the role of each Phe residue near the N-terminus as well as the Val10 residue located near the boundary of the hydrophobic and hydrophilic sectors of the helical wheel diagram. Fluorescence dye leakage and tryptophan fluorescence experiments were used to study peptide-lipid interactions, showing comparable depths of insertion of substituted peptides in different membranes. Phe2 was found to be the most deeply inserted phenylalanine in both bacterial- and mammalian-mimic membranes. Each Phe was substituted with Ala or Lys to investigate its functional role. Phe2 plays key roles in the cytotoxicity as well as the antibacterial activities of Pis-1, and Phe6 is essential for the antibacterial activities of Pis-1. We also designed and synthesized a piscidin analog, Pis-V10K, in which Lys was substituted for Val10, resulting in an elevated amphipathic α-helical structure. Pis-V10K showed similar antibacterial activity (average minimum inhibitory concentration (MIC)  = 1.6 µM) to Pis-1 (average MIC  = 1.5 µM). However, it exhibited much lower cytotoxicity than Pis-1. Lys10-substituted analogs, Pis-F1K/V10K, Pis-F2K/V10K, and Pis-F6K/V10K in which Lys was substituted for Phe retained antibacterial activity toward standard and drug-resistant bacterial strains with novel bacterial cell selectivity. They exert anti-inflammatory activities via inhibition of nitric oxide production, TNF-α secretion, and MIP-1 and MIP-2 production. They may disrupt the binding of LPS to toll-like receptors, eventually suppressing MAPKs-mediated signaling pathways. These peptides may be good candidates for the development of peptide antibiotics with potent antibacterial activity but without cytotoxicity.  相似文献   
53.
Coprisin is a 43-mer defensin-like peptide from the dung beetle, Copris tripartitus. Here, we investigated the induction of apoptosis by coprisin in Candida albicans cells. Coprisin exerted antifungal and fungicidal activity without any hemolytic effect. Confocal microscopy indicated that coprisin accumulated in the nucleus of cells. The membrane studies, 1,6-diphenyl-1,3,5-hexatriene, calcein-leakage, and giant unilamellar vesicle assays, confirmed that coprisin did not disrupt the fungal plasma membrane at all. Moreover, the activity of coprisin was energy- and salt-dependent. Next, we investigated whether coprisin induced apoptosis in C. albicans. Annexin V-FITC staining and TUNEL assay showed that coprisin was involved with both the early and the late stages of apoptosis. Coprisin also increased the intracellular reactive oxygen species level, and hydroxyl radicals were included at high levels among the species. The effect of thiourea as a hydroxyl radical scavenger further confirmed the existence of the hydroxyl radicals. Furthermore, coprisin induced mitochondrial membrane potential dysfunction, cytochrome c release, and activation of metacaspases. In summary, this study suggests that coprisin could be a model molecule for a large family of novel antimicrobial peptides possessing apoptotic activity.  相似文献   
54.
Ha SK  Moon E  Lee P  Ryu JH  Oh MS  Kim SY 《Neurochemical research》2012,37(7):1560-1567
Under normal conditions in the brain, microglia play roles in homeostasis regulation and defense against injury. However, over-activated microglia secrete proinflammatory and cytotoxic factors that can induce progressive brain disorders, including Alzheimer's disease, Parkinson's disease and ischemia. Therefore, regulation of microglial activation contributes to the suppression of neuronal diseases via neuroinflammatory regulation. In this study, we investigated the effects of acacetin (5,7-dihydroxy-4'-methoxyflavone), which is derived from Robinia pseudoacacia, on neuroinflammation in lipopolysaccharide (LPS)-stimulated BV-2 cells and in animal models of neuroinflammation and ischemia. Acacetin significantly inhibited the release of nitric oxide (NO) and prostaglandin E(2) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS-stimulated BV-2 cells. The compound also reduced proinflammatory cytokines, tumor necrosis factor-α and interleukin-1β, and inhibited the activation of nuclear factor-κB and p38 mitogen-activated protein kinase. In an LPS-induced neuroinflammation mouse model, acacetin significantly suppressed microglial activation. Moreover, acacetin reduced neuronal cell death in an animal model of ischemia. These results suggest that acacetin may act as a potential therapeutic agent for brain diseases involving neuroinflammation.  相似文献   
55.
56.
Hosta longipes (FR. et SAV.) MATSUMURA (Liliaceae) is an edible vegetable in Korea. This study was conducted with the aim of evaluating the potential of H. longipes as a functional food for the treatment of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. In this respect, the study resulted in the identification of three new steroidal compounds, longipenane (1), longipenane 26-O-β-d-glucopyranoside (2) and neogitogenin 3-O-α-l-rhamnopyranosyl-(1→2)-O-[β-d-glucopyranosyl-(1→4)]-β-d-galactopyranoside (3), along with two known steroidal saponins (4 and 5). The identification and structural elucidation of these compounds were based on 1D and 2D NMR measurements, high-resolution FAB mass spectroscopy (HR-FAB-MS), and chemical methods. A proinflammatory mediator, nitric oxide (NO), in murine microglial BV-2 cells was used to assess the anti-neuroinflammatory effect of the isolated compounds from H. longipes. Among them, compounds 4 and 5 showed strong inhibitory effects on NO production without high cell toxicity in lipopolysaccharide-activated BV-2 cells (IC50 = 17.66 and 13.16 μM, respectively).  相似文献   
57.
A Gram-positive bacterial strain capable of aerobic biodegradation of 4-fluorophenol (4-FP) as the sole source of carbon and energy was isolated by selective enrichment from soil samples collected near an industrial site. The organism, designated strain IF1, was identified as a member of the genus Arthrobacter on the basis of 16S ribosomal RNA gene sequence analysis. Arthrobacter strain IF1 was able to mineralize 4-FP up to concentrations of 5 mM in batch culture. Stoichiometric release of fluoride ions was observed, suggesting that there is no formation of halogenated dead-end products during 4-FP metabolism. The degradative pathway of 4-FP was investigated using enzyme assays and identification of intermediates by gas chromatography (GC), GC–mass spectrometry (MS), high-performance liquid chromatography, and liquid chromatography–MS. Cell-free extracts of 4-FP-grown cells contained no activity for catechol 1,2-dioxygenase or catechol 2,3-dioxygenase, which indicates that the pathway does not proceed through a catechol intermediate. Cells grown on 4-FP oxidized 4-FP, hydroquinone, and hydroxyquinol but not 4-fluorocatechol. During 4-FP metabolism, hydroquinone accumulated as a product. Hydroquinone could be converted to hydroxyquinol, which was further transformed into maleylacetic acid and β-ketoadipic acid. These results indicate that the biodegradation of 4-FP starts with a 4-FP monooxygenase reaction that yields benzoquinone, which is reduced to hydroquinone and further metabolized via the β-ketoadipic acid pathway.  相似文献   
58.
Japanese red pine (Pinus densiflora) is widely present in China, Japan, and Korea. Its green pine leaves have traditionally been used as a food as well as a coloring agent. After being shed, pine leaves change their color from green to brown within two years, and although the brown pine leaves are abundantly available, their value has not been closely assessed. In this study, we investigated the potential anti-photoaging properties of brown pine leaves for skin. Brown pine leaf extract (BPLE) inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) expression to a greater extent than pine leaf extract (PLE) in human keratinocytes and a human skin equivalent model. HPLC analysis revealed that the quantity of trans-communic acid (TCA) and dehydroabietic acid (DAA) significantly increases when the pine leaf color changes from green to brown. BPLE and TCA elicited reductions in UVB-induced MMP-1 mRNA expression and activator protein-1 (AP-1) transactivation by reducing DNA binding activity of phospho-c-Jun, c-fos and Fra-1. BPLE and TCA also inhibited UVB-induced Akt phosphorylation, but not mitogen activated protein kinase (MAPK), known regulators of AP-1 transactivation. We additionally found that BPLE and TCA inhibited phosphoinositide 3-kinase (PI3K), the upstream kinase of Akt, in vitro. In summary, both BPLE and its active component TCA exhibit protective effects against UVB-induced skin aging. Taken together, these findings underline the potential for BPLE and TCA to be utilized as anti-wrinkling agents and cosmetic ingredients, as they suppress UVB-induced MMP-1 expression.  相似文献   
59.
Improvements in the dissolution of proteins in two-dimensional gel electrophoresis have greatly advanced the ability to analyze the proteomes of microorganisms under a wide variety of physiological conditions. This study examined the effect of various combinations of chaotropic agents, a reducing agent, and a detergent on the dissolution of the Streptomyces peucetius cytosolic proteins. The use of urea alone in a rehydration buffer as a chaotropic agent gave the proteome a higher solubility than any of the urea and thiourea combinations, and produced the highest resolution and clearest background in two-dimensional gel electrophoresis. Two % CHAPS, as a detergent in a rehydration buffer, improved the protein solubility. After examining the effect of several concentrations of reducing agent, 50 mM DTT in a rehydration buffer was found to be an optimal condition for the proteome analysis of Streptomyces. Using this optimized buffer condition, more than 2,000 distinct and differentially expressed soluble proteins could be resolved using two-dimensional gel electrophoresis with a pI ranging from 4-7. Under this optimized condition, 15 novel small proteins with low-level expression, which could not be analyzed under the non-optimized conditions, were identified. Overall, the optimized condition helped produce a better reference gel for Streptomyces peucetius.  相似文献   
60.
A long-standing practice in the treatment of cancer is that of hitting hard with the maximum tolerated dose to eradicate tumors. This continuous therapy, however, selects for resistant cells, leading to the failure of the treatment. A different type of treatment strategy, adaptive therapy, has recently been shown to have a degree of success in both preclinical xenograft experiments and clinical trials. Adaptive therapy is used to maintain a tumor’s volume by exploiting the competition between drug-sensitive and drug-resistant cells with minimum effective drug doses or timed drug holidays. To further understand the role of competition in the outcomes of adaptive therapy, we developed a 2D on-lattice agent-based model. Our simulations show that the superiority of the adaptive strategy over continuous therapy depends on the local competition shaped by the spatial distribution of resistant cells. Intratumor competition can also be affected by fibroblasts, which produce microenvironmental factors that promote cancer cell growth. To this end, we simulated the impact of different fibroblast distributions on treatment outcomes. As a proof of principle, we focused on five types of distribution of fibroblasts characterized by different locations, shapes, and orientations of the fibroblast region with respect to the resistant cells. Our simulation shows that the spatial architecture of fibroblasts modulates tumor progression in both continuous and adaptive therapy. Finally, as a proof of concept, we simulated the outcomes of adaptive therapy of a virtual patient with four metastatic sites composed of different spatial distributions of fibroblasts and drug-resistant cell populations. Our simulation highlights the importance of undetected metastatic lesions on adaptive therapy outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号