首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   8篇
  2022年   3篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   3篇
  2014年   8篇
  2013年   19篇
  2012年   20篇
  2011年   7篇
  2010年   15篇
  2009年   5篇
  2008年   10篇
  2007年   6篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
排序方式: 共有114条查询结果,搜索用时 31 毫秒
11.
Phosphomannose isomerases (PMIs) in bacteria and fungi catalyze the reversible conversion of D-fructose-6-phosphate to D-mannose-6-phosphate during biosynthesis of GDP-mannose, which is the main intermediate in the mannosylation of important cell wall components, glycoproteins, and certain glycolipids. In the present study, the kinetic parameters of PMI from Streptomyces coelicolor were obtained, and its function on antibiotic production and sporulation was studied. manA (SCO3025) encoding PMI in S. coelicolor was deleted by insertional inactivation. Its mutant (S. coelicolor?manA) was found to exhibit a bld-like phenotype. Additionally, S. coelicolor?manA failed to produce the antibiotics actinorhodin and red tripyrolle undecylprodigiosin in liquid media. To identify the function of manA, the gene was cloned and expressed in Escherichia coli BL21 (DE3). The purified recombinant ManA exhibited PMI activity (K(cat)/K(m) (mM(-1) s(-1) = 0.41 for D-mannose-6-phosphate), but failed to show GDP-D-mannose pyrophosphorylase [GMP (ManC)] activity. Complementation analysis with manA from S. coelicolor or E. coli resulted in the recovery of bld-like phenotype of S. coelicolor?manA. SCO3026, another ORF that encodes a protein with sequence similarity towards bifunctional PMI and GMP, was also tested for its ability to function as an alternate ManA. However, the purified protein of SCO3026 failed to exhibit both PMI and GMP activity. The present study shows that enzymes involved in carbohydrate metabolism could control cellular differentiation as well as the production of secondary metabolites.  相似文献   
12.
13.
A novel synthetic 3,4-dihydropyrimidinone derivative, compound D22 (ethyl 6-methyl-4-(3-phenoxyphenyl)-2-thioxo-3,4-dihydropyrimidine-5-carboxylate), was found to exert anti-inflammatory properties in lipopolysaccharide-stimulated microglial BV-2 cells. Compound D22 reduced the pro-inflammatory factors such as nitric oxide, prostaglandin E(2), tumor necrosis factor-α and interleukin-1β. Moreover, it suppressed the expressions of inducible NO synthase and cyclooxygenase-2. Compound D22 inhibited the activation of mitogen-activated protein kinases. When compound D22-conditioned media from BV-2 cells were applied to N2a cells, neuronal cell death was inhibited via suppression of caspase-3 activation and regulation of Bcl-2 and Bax proteins expression. These results suggest that compound D22 may be useful for treating neurodegenerative diseases related with neuroinflammation.  相似文献   
14.
The past few years of research in human evolutionary genetics have provided novel insights and questions regarding how human adaptations to recent selective pressures have taken place. Here, we review the advances most relevant to understanding human evolution in response to pathogen-induced selective pressures. Key insights come from theoretical models of adaptive evolution, particularly those that consider spatially structured populations, and from empirical population genomic studies of adaptive evolution in humans. We also review the CCR5-Δ32 HIV resistance allele as a case study of pathogen resistance in humans. Taken together, the results make clear that the human response to pathogen-induced selection pressures depends on a complex interplay between the age of the pathogen, the genetic basis of potential resistance phenotypes, and how population structure impacts the adaptive process in humans.  相似文献   
15.
Previously, we reported that high PKCK2 activity could protect cancer cells from death receptor-mediated apoptosis through phosphorylation of procaspase-2. Because anoikis is another form of apoptosis, we asked whether PKCK2 could similarly confer resistance to anoikis on cancer cells. Human esophageal squamous cancer cell lines with high PKCK2 activity (HCE4 and HCE7) were anoikis-resistant, whereas cell lines with low PKCK2 activity (TE2 and TE3) were anoikis-sensitive. Because the cells showed different sensitivity to anoikis, we compared the expression of cell adhesion molecules between anoikis-sensitive TE2 and anoikis-resistant HCE4 cells using cDNA microarray. We found that E-cadherin is expressed only in TE2 cells; whereas N-cadherin is expressed instead of E-cadherin in HCE4 cells. To examine whether PKCK2 activity could determine the type of cadherin expressed, we first increased intracellular PKCK2 activity in TE2 cells by overexpressing the PKCK2α catalytic subunit using lentivirus and found that high PKCK2 activity could switch cadherin expression from type E to N and confer anoikis resistance. Conversely, a decrease in PKCK2 activity in HCE4 cells by knockdown of PKCK2α catalytic subunit using shRNA induced N- to E-cadherin switching and the anoikis-resistant cells became sensitive. In addition, N-cadherin expression correlated with PKB/Akt activation and increased invasiveness. We conclude that high intracellular PKCK2 activity confers anoikis resistance on esophageal cancer cells by inducing E- to N-cadherin switching. Mol Cancer Res; 10(8); 1032-8. ?2012 AACR.  相似文献   
16.
17.
Doxorubicin (DXR) and daunorubicin (DNR) are anthracycline antibiotics produced by Streptomyces peucetius and widely used as cancer chemotherapeutic agents. To improve their productivity, regulation of DXR/DNR synthesis genes as well as central metabolic pathway genes must be understood more clearly. So far, studies have focused on DXR/DNR gene regulation. To investigate the correlation between the central metabolic pathway genes and DXR/DNR productivity, we selected 265 genes involved in glycolysis, fermentation, the citric acid cycle, butanoate metabolism, etc., and searched for their sequences in the S. peucetius genome by comparing gene sequences to those of Streptomyces coelicolor. The homologous genes were amplified by PCR and arrayed on glass microarray slides. Gene expression was monitored under two different growth media conditions, R2YE and NDYE. Genes involved in the production of malonyl-CoA and propionyl-CoA, the main precursors for doxorubicin synthesis, were mainly upregulated in NDYE media. Genes related to acetyl-CoA and the urea cycle were also upregulated. These changes in gene expression were confirmed by real-time RT-PCR.  相似文献   
18.
Carassius carp is one of the most popular freshwater fish as a source of food and aesthetic enjoyment from historical times. However, the species status of this group is controversial owing to extreme morphological variation and various ploidy levels, and therefore, many regional groups still remain to be reconsidered. The taxonomy of the Carassius fish in the Korean Peninsula, previously identified as C. auratus langsdorfi, has long been in doubt because several river basins were isolated from each other by the sea to such an extent that the strong geographic structure of the population may have influenced this fish group distributed over whole peninsula. Here, we suggest some clues to resolve the taxonomic entity of Carassius fish in South Korea using mitochondrial genetic variation in a comparison with those from nearby regions with a view to establishing the phylogeography and genetic structure of population. We found three monophyletic phylogroups (pgA, pgB, and pgC), which interestingly do not relate to C. auratus langsdorfi. Geographically, pgA and pgB were observed only in the westward rivers (WWRs) and southward rivers (SWRs), respectively, except for some marginal locations between the two river groups. pgA, including the haplotypes from Weihai, northern China, shared a common ancestry with C. gibelio. pgC may be a lineage that has been introduced, as shown by the result that it belongs to same clade as goldfish. It is likely that pgB has undergone a distinct evolutionary process after separation from pgA and the population of northern mainland China. Our results suggest the need of further taxonomic studies to elucidate the status of these groups and to assign an adequate taxonomic category to each. And, therefore, pgA and pgB, regardless of taxonomic level, deserve conservation as endemic groups in this region.  相似文献   
19.
20.
The Tibetan grey wolf (Canis lupus chanco) occupies habitats on the Qinghai-Tibet Plateau, a high altitude (>3000 m) environment where low oxygen tension exerts unique selection pressure on individuals to adapt to hypoxic conditions. To identify genes involved in hypoxia adaptation, we generated complete genome sequences of nine Chinese wolves from high and low altitude populations at an average coverage of 25× coverage. We found that, beginning about 55,000 years ago, the highland Tibetan grey wolf suffered a more substantial population decline than lowland wolves. Positively selected hypoxia-related genes in highland wolves are enriched in the HIF signaling pathway (P = 1.57E-6), ATP binding (P = 5.62E-5), and response to an oxygen-containing compound (P≤5.30E-4). Of these positively selected hypoxia-related genes, three genes (EPAS1, ANGPT1, and RYR2) had at least one specific fixed non-synonymous SNP in highland wolves based on the nine genome data. Our re-sequencing studies on a large panel of individuals showed a frequency difference greater than 58% between highland and lowland wolves for these specific fixed non-synonymous SNPs and a high degree of LD surrounding the three genes, which imply strong selection. Past studies have shown that EPAS1 and ANGPT1 are important in the response to hypoxic stress, and RYR2 is involved in heart function. These three genes also exhibited significant signals of natural selection in high altitude human populations, which suggest similar evolutionary constraints on natural selection in wolves and humans of the Qinghai-Tibet Plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号