首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   30篇
  国内免费   1篇
  536篇
  2023年   1篇
  2022年   10篇
  2021年   20篇
  2020年   8篇
  2019年   7篇
  2018年   4篇
  2017年   8篇
  2016年   21篇
  2015年   37篇
  2014年   31篇
  2013年   33篇
  2012年   36篇
  2011年   39篇
  2010年   34篇
  2009年   26篇
  2008年   32篇
  2007年   35篇
  2006年   29篇
  2005年   28篇
  2004年   16篇
  2003年   19篇
  2002年   15篇
  2001年   2篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1994年   4篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   5篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
  1962年   3篇
  1961年   1篇
  1960年   2篇
  1952年   1篇
  1947年   1篇
  1926年   1篇
排序方式: 共有536条查询结果,搜索用时 15 毫秒
31.
Mass spectrometry-based proteomic analyses performed on cartilage tissue extracts identified the serine protease HtrA1/PRSS11 as a major protein component of human articular cartilage, with elevated levels occurring in association with osteoarthritis. Overexpression of a catalytically active form of HtrA1, but not an active site mutant (S328A), caused a marked reduction in proteoglycan content in chondrocyte-seeded alginate cultures. Aggrecan degradation fragments were detected in conditioned media from the alginate cultures overexpressing active HtrA1. Incubation of native or recombinant aggrecan with wild type HtrA1 resulted in distinct cleavage of these substrates. Cleavage of aggrecan by HtrA1 was strongly enhanced by HtrA1 agonists such as CPII, a C-terminal hexapeptide derived from the C-propeptide of procollagen IIα1 (i.e. chondrocalcin). A novel HtrA1-susceptible cleavage site within the interglobular domain (IGD) of aggrecan was identified, and an antibody that specifically recognizes the neoepitope sequence (VQTV356) generated at the HtrA1 cleavage site was developed. Western blot analysis demonstrated that HtrA1-generated aggrecan fragments containing the VQTV356 neoepitope were significantly more abundant in osteoarthritic cartilage compared with cartilage from healthy joints, implicating HtrA1 as a critical protease involved in proteoglycan turnover and cartilage degradation during degenerative joint disease.The mammalian high-temperature requirement A (HtrA) family of serine proteases is defined by a characteristic trypsin-like serine protease domain and one or two C-terminal PDZ domains. Four mammalian HtrA proteins have been identified to date, HtrA1–4. HtrA1 (also called PRSS11) is a ubiquitously expressed extracellular serine protease which contains a signal sequence for secretion, an insulin-like growth factor (IGF)2-binding protein domain, and a Kazal-type serine protease inhibitor domain in addition to the serine protease domain and one C-terminal PDZ domain (1). HtrA1 has been implicated in the progression of several pathologies including age-related macular degeneration, cancer, Alzheimer disease, rheumatoid arthritis, and osteoarthritis (OA) (210). HtrA1 has also been shown to inhibit osteoblast mineralization (11).Expression of HtrA1 has been found to be elevated in articular cartilage in association with OA (5). In addition, HtrA1 levels are up-regulated in murine cartilage after experimentally induced joint damage (6). The physiological role of HtrA1 in OA disease progression as well as in other pathologies is unclear. Preliminary studies using in vitro digestion assays suggest that HtrA1 might be capable of digesting cartilage extracellular matrix (ECM) proteins such as fibromodulin, cartilage oligomeric matrix protein (COMP), fibronectin, decorin, and aggrecan (6, 12, 13). Furthermore, it was recently reported that elevated levels of HtrA1 protein (∼7-fold above normal) are present in synovial fluids obtained from OA patients and that fibronectin fragments generated by HtrA1 cleavage induced the expression of catabolic enzymes such as matrix metalloproteinases-1 (MMP-1) and MMP-3 in synovial fibroblasts (4). HtrA1 has also been shown to modulate multiple signaling pathways in vitro. It binds to transforming growth factor-β family proteins including transforming growth factor-β1 and bone morphogenetic proteins 2 and 4 and inhibits signaling mediated by these factors (14, 15). In addition, HtrA1 has been shown to cleave IGF-binding protein-5 and possibly regulate signaling mediated by IGF (16). These findings suggest that the protease HtrA1 may play a physiological role in cartilage during OA.Articular cartilage is made up of chondrocytes surrounded by the ECM comprised mainly of the proteoglycan, aggrecan, and type II collagen. During normal homeostasis there is a dynamic balance between anabolic activities such as proteoglycan synthesis as well as catabolic activities in which the ECM is destroyed. When the catabolic activities of proteases, such as MMPs and aggrecanases, offset new matrix synthesis, focal degradation and loss of articular cartilage occurs, resulting in the development of OA. In some in vitro digestion studies, we and others have shown degradation of aggrecan by recombinant HtrA1 (6, 12, 13). In the present study we set out to examine the physiological relevance of aggrecan cleavage by HtrA1 in OA disease progression.  相似文献   
32.
Satellite sequences are an important part of the pericentromeric regions in mammalian genomes; they play a relevant role in chromosome stability and DNA hypomethylation of these sequences has been reported in ICF syndrome and in some cancers that are closely associated with chromosomal abnormalities. Epigenetic modifications of satellite sequences and their consequences have not been extensively studied in human cells. In the present work, we evaluated satellite 2 methylation patterns in human lymphocytes exposed to 5-azacytidine (5-azaC) and assessed the relationship between these patterns and chromosome missegregation. Human lymphocytes were exposed to 10μM 5-azaC for 24, 48, and 72h. Segregation errors were evaluated in binucleate cells using FISH against pericentromeric regions of chromosomes 1, 9, and 16. DNA methylation patterns were evaluated by immunodetection, and by bisulfite plus urea conversion and sequencing. We have identified that 5-azaC induced missegregation of chromosomes 1 and 16, which have highly methylated satellite 2, after 72h of exposure. Chromosome methylation patterns showed a notable decrease in pericentromeric methylation. Bisulfite conversion and sequencing analysis demonstrated demethylation of satellite 2 associated to 5-azaC exposure, principally after 72h of treatment. This change occurred in a non-specific pattern. Our study demonstrates an association between loss of satellite 2 DNA methylation and chromosome loss in human lymphocytes.  相似文献   
33.
Two new species of phlebotomine sand fly from Colombian Andes are described, belonging to the subgenus Pifanomyia of the genus Pintomyia. P. (P.) limafalcaoae sp. nov. for which both sexes are described, is assigned to the series pia while P. (P.) antioquiensis sp. nov., known only from the male, is included in the series verrucarum. The subgenus Pifanomyia is characterized and identification keys presented for the two new species.  相似文献   
34.
The p75 neurotrophin receptor (p75NTR) is a critical mediator of neuronal death and tissue remodeling and has been implicated in various neurodegenerative diseases and cancers. The death domain (DD) of p75NTR is an intracellular signaling hub and has been shown to interact with diverse adaptor proteins. In breast cancer cells, binding of the adaptor protein TRADD to p75NTR depends on nerve growth factor and promotes cell survival. However, the structural mechanism and functional significance of TRADD recruitment in neuronal p75NTR signaling remain poorly understood. Here we report an NMR structure of the p75NTR-DD and TRADD-DD complex and reveal the mechanism of specific recognition of the TRADD-DD by the p75NTR-DD mainly through electrostatic interactions. Furthermore, we identified spatiotemporal overlap of p75NTR and TRADD expression in developing cerebellar granule neurons (CGNs) at early postnatal stages and discover the physiological relevance of the interaction between TRADD and p75NTR in the regulation of canonical NF-κB signaling and cell survival in CGNs. Our results provide a new structural framework for understanding how the recruitment of TRADD to p75NTR through DD interactions creates a membrane-proximal platform, which can be efficiently regulated by various neurotrophic factors through extracellular domains of p75NTR, to propagate downstream signaling in developing neurons.  相似文献   
35.
DNA-protein cross-links form when guanine undergoes a 1-electron oxidation in a flash-quench experiment, and the importance of reactive oxygen species, protein, and photosensitizer is examined here. In these experiments, a strong oxidant produced by oxidative quenching of a DNA-bound photosensitizer generates an oxidized guanine base that reacts with protein to form the covalent adduct. These cross-links are cleaved by hot piperidine and are not the result of reactive oxygen species, since neither a hydroxyl radical scavenger (mannitol) nor oxygen affects the yield of DNA-histone cross-linking, as determined via a chloroform extraction assay. The cross-linking yield depends on protein, decreasing as histone > cytochrome c > bovine serum albumin. The yield does not depend on the cytochrome oxidation state, suggesting that reduction of the guanine radical by ferrocytochrome c does not compete effectively with cross-linking. The photosensitizer strongly influences the cross-linking yield, which decreases in the order Ru(phen)(2)dppz(2+) [phen = 1,10-phenanthroline; dppz = dipyridophenazine] > Ru(bpy)(3)(2+) [bpy = 2,2'-bipyridine] > acridine orange > ethidium, in accordance with measured oxidation potentials. A long-lived transient absorption signal for ethidium dication in poly(dG-dC) confirms that guanine oxidation is inefficient for this photosensitizer. From a polyacrylamide sequencing gel of a (32)P-labeled 40-mer, all of these photosensitizers are shown to damage guanines preferentially at the 5' G of 5'-GG-3' steps, consistent with a 1-electron oxidation. Additional examination of ethidium shows that it can generate cross-links between histone and plasmid DNA (pUC19) and that the yield depends on the quencher. Altogether, these results illustrate the versatility of the flash-quench technique as a way to generate physiologically relevant DNA-protein adducts via the oxidation of guanine and expand the scope of such cross-linking reactions to include proteins that may associate only transiently with DNA.  相似文献   
36.
37.
38.
Psychiatric genomics research with African populations comes with a range of practical challenges around translation of psychiatric genomics research concepts, procedures, and nosology. These challenges raise deep ethical issues particularly around legitimacy of informed consent, a core foundation of research ethics. Through a consideration of the constitutive function of language, the paper problematises like‐for‐like, designative translations which often involve the ‘indigenization’ of English terms or use of metaphors which misrepresent the risks and benefits of research. This paper argues that effective translation of psychiatric genomics research terminology in African contexts demands substantive engagement with African conceptual schemas and values. In developing attenuated forms of translational thinking, researchers may recognise the deeper motivational reasons behind participation in research, highlighting the possibility that such reasons may depart from the original meaning implied within informed consent forms. These translational issues might be ameliorated with a critical re‐examination of how researchers develop and present protocols to institutional ethics review boards.  相似文献   
39.
The effects of early environmental conditions can profoundly affect individual development and adult phenotype. In birds, limiting resources can affect growth as nestlings, but also fitness and survival as adults. Following periods of food restriction, individuals may accelerate development, undergoing a period of rapid “catch-up” growth, in an attempt to reach the appropriate size at adulthood. Previous studies of altricial birds have shown that catch-up growth can have negative consequences in adulthood, although this has not been explored in species with different developmental strategies. Here, we investigated the effects of resource limitation and the subsequent period of catch-up growth, on the morphological and metabolic phenotype of adult Japanese quail (Coturnix japonica), a species with a precocial developmental strategy. Because males and females differ in adult body size, we also test whether food restriction had sex-specific effects. Birds that underwent food restriction early in development had muscles of similar size and functional maturity, but lower adult body mass than controls. There was no evidence of sex-specific sensitivity of food restriction on adult body mass; however, there was evidence for body size. Females fed ad lib were larger than males fed ad lib, while females subjected to food restriction were of similar size to males. Adults that had previously experienced food restriction did not have an elevated metabolic rate, suggesting that in contrast to altricial nestlings, there was no metabolic carry-over effect of catch-up growth into adulthood. While Japanese quail can undergo accelerated growth after re-feeding, timing of food restriction may be important to adult size, particularly in females. However, greater developmental flexibility compared to altricial birds may contribute to the lack of metabolic carryover effects at adulthood.  相似文献   
40.
The ability to control the morphologies of biomolecular aggregates is a central objective in the study of self-assembly processes. The development of predictive models offers the surest route for gaining such control. Under the right conditions, proteins will self-assemble into fibers that may rearrange themselves even further to form diverse structures, including the formation of closed loops. In this study, chicken egg white ovalbumin is used as a model for the study of fibril loops. By monitoring the kinetics of self-assembly, we demonstrate that loop formation is a consequence of end-to-end association between protein fibrils. A model of fibril formation kinetics, including end-joining, is developed and solved, showing that end-joining has a distinct effect on the growth of fibrillar mass density (which can be measured experimentally), establishing a link between self-assembly kinetics and the underlying growth mechanism. These results will enable experimentalists to infer fibrillar morphologies from an appropriate analysis of self-assembly kinetic data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号