首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5639篇
  免费   415篇
  国内免费   9篇
  6063篇
  2023年   20篇
  2022年   67篇
  2021年   83篇
  2020年   70篇
  2019年   77篇
  2018年   123篇
  2017年   108篇
  2016年   147篇
  2015年   266篇
  2014年   313篇
  2013年   372篇
  2012年   516篇
  2011年   459篇
  2010年   265篇
  2009年   252篇
  2008年   373篇
  2007年   307篇
  2006年   282篇
  2005年   291篇
  2004年   238篇
  2003年   241篇
  2002年   184篇
  2001年   145篇
  2000年   130篇
  1999年   117篇
  1998年   33篇
  1997年   50篇
  1996年   24篇
  1995年   23篇
  1994年   27篇
  1993年   22篇
  1992年   46篇
  1991年   42篇
  1990年   35篇
  1989年   36篇
  1988年   36篇
  1987年   28篇
  1986年   26篇
  1985年   22篇
  1984年   13篇
  1983年   19篇
  1982年   11篇
  1979年   12篇
  1978年   13篇
  1977年   8篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
  1972年   8篇
  1971年   8篇
排序方式: 共有6063条查询结果,搜索用时 15 毫秒
21.
Plasmodiophora brassicae causes clubroot disease in cruciferous plants, and is an emerging threat to Canadian canola (Brassica napus) production. This review focuses on recent studies into the pathogenic diversity of P. brassicae populations, mechanisms of pathogenesis and resistance, and the development of diagnostic tests for pathogen detection and quantification. TAXONOMY: Plasmodiophora brassicae is a soil-borne, obligate parasite within the class Phytomyxea (plasmodiophorids) of the protist supergroup Rhizaria. DISEASE SYMPTOMS: Clubroot development is characterized by the formation of club-shaped galls on the roots of affected plants. Above-ground symptoms include wilting, stunting, yellowing and premature senescence. DISEASE CYCLE: Plasmodiophora brassicae first infects the root hairs, producing motile zoospores that invade the cortical tissue. Secondary plasmodia form within the root cortex and, by triggering the expression of genes involved in the production of auxins, cytokinins and other plant growth regulators, divert a substantial proportion of plant resources into hypertrophic growth of the root tissues, resulting in the formation of galls. The secondary plasmodia are cleaved into millions of resting spores and the root galls quickly disintegrate, releasing long-lived resting spores into the soil. A serine protease, PRO1, has been shown to trigger resting spore germination. PHYSIOLOGICAL SPECIALIZATION: Physiological specialization occurs in populations of P. brassicae, and various host differential sets, consisting of different collections of Brassica genotypes, are used to distinguish among pathotypes of the parasite. DETECTION AND QUANTIFICATION: As P. brassicae cannot be cultured, bioassays with bait plants were traditionally used to detect the pathogen in the soil. More recent innovations for the detection and quantification of P. brassicae include the use of antibodies, quantitative polymerase chain reaction (qPCR) and qPCR in conjunction with signature fatty acid analysis, all of which are more sensitive than bioassays. RESISTANCE IN CANOLA: Clubroot-resistant canola hybrids, recently introduced into the Canadian market, represent an important new tool for clubroot management in this crop. Genetic resistance must be carefully managed, however, as it has been quickly overcome in other regions. At least three resistance genes and one or two quantitative trait loci are involved in conferring resistance to P. brassicae. Root hair infection still occurs in resistant cultivars, but secondary plasmodia often remain immature and unable to produce resting spores. Fewer cell wall breakages occur in resistant hosts, and spread of the plasmodium through cortical tissue is restricted. More information on the genetics of clubroot resistance in canola is needed to ensure more effective resistance stewardship. USEFUL WEBSITES: http://www.canolacouncil.org/clubroot/resources.aspx, http://tu-dresden.de/die_tu_dresden/fakultaeten/fakultaet_mathematik_und_naturwissenschaften/fachrichtung_biologie/botanik/pflanzenphysiologie/clubroot, http://www.ohio.edu/people/braselto/plasmos/  相似文献   
22.
23.
24.
The antioxidative property of green tea against iron-induced oxidative stress was investigated in the rat brain both in vivo and in vivo. Incubation of brain homogenates at 37 degrees C for 4 hours in vitro increased the formation of Schiff base fluorescent products of malonaldehyde, an indicator of lipid peroxidation. Auto-oxidation (without exogenous iron) of brain homogenates was inhibited by green tea extract in a concentration-dependent manner. Moreover, incubation with iron (1 microM) elevated lipid peroxidation of brain homogenates after 4-hour incubation at 37 degrees C. Co-incubation with green tea extract dose-dependently inhibited the iron-induced elevation in lipid peroxidation. For the in vivo studies: ferrous citrate (iron, 4.2 nmoles) was infused intranigrally and induced degeneration of the nigrostriatal dopaminergic system of rat brain. An increase in lipid peroxidation in substantia nigra as well as a decrease in dopamine content in striatum was observed seven days after the iron infusion. Intranigral infusion of green tea extract alone did not increase, and in some cases, even decreased lipid peroxidation in substantia nigra. Co-infusion of green tea extract prevented oxidative injury induced by iron. Both iron-induced elevation in lipid peroxidation in substantia nigra and iron-induced decrease in dopamine content in striatum were suppressed. Oral administration of green tea extract for two weeks did not prevent the iron-induced oxidative injury in nigrostriatal dopaminergic system. Our results suggest that intranigral infusion of green tea extract appears to be nontoxic to the nigrostriatal dopaminergic system. Furthermore, the potent antioxidative action of green tea extract protects the nigrostriatal dopaminergic system from the iron-induced oxidative injury.  相似文献   
25.
In the present study, we screened proteomic and cytokine biomarkers between patients with adenomatous polyps and colorectal cancer (CRC) in order to improve our understanding of the molecular mechanisms behind turmorigenesis and tumor progression in CRC. To this end, we performed comparative proteomic analysis of plasma proteins using a combination of 2DE and MS as well as profiled differentially regulated cytokines and chemokines by multiplex bead analysis. Proteomic analysis identified 11 upregulated and 13 downregulated plasma proteins showing significantly different regulation patterns with diagnostic potential for predicting progression from adenoma to carcinoma. Some of these proteins have not previously been implicated in CRC, including upregulated leucine‐rich α‐2‐glycoprotein, hemoglobin subunit β, Ig α‐2 chain C region, and complement factor B as well as downregulated afamin, zinc‐α‐2‐glycoprotein, vitronectin, and α‐1‐antichymotrypsin. In addition, plasma levels of three cytokines/chemokines, including interleukin‐8, interferon gamma‐induced protein 10, and tumor necrosis factor α, were remarkably elevated in patients with CRC compared to those with adenomatous polyps. Although further clinical validation is required, these proteins and cytokines can be established as novel biomarkers for CRC and/or its progression from colon adenoma.  相似文献   
26.
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号