首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3202篇
  免费   219篇
  国内免费   1篇
  3422篇
  2023年   14篇
  2022年   29篇
  2021年   53篇
  2020年   35篇
  2019年   47篇
  2018年   72篇
  2017年   54篇
  2016年   98篇
  2015年   173篇
  2014年   178篇
  2013年   204篇
  2012年   276篇
  2011年   243篇
  2010年   150篇
  2009年   144篇
  2008年   203篇
  2007年   190篇
  2006年   151篇
  2005年   147篇
  2004年   157篇
  2003年   146篇
  2002年   86篇
  2001年   70篇
  2000年   74篇
  1999年   59篇
  1998年   16篇
  1997年   21篇
  1996年   24篇
  1995年   15篇
  1994年   9篇
  1993年   12篇
  1992年   23篇
  1991年   16篇
  1990年   15篇
  1989年   13篇
  1988年   15篇
  1987年   16篇
  1986年   16篇
  1985年   13篇
  1984年   13篇
  1983年   13篇
  1982年   10篇
  1981年   10篇
  1980年   10篇
  1979年   8篇
  1978年   6篇
  1975年   11篇
  1974年   8篇
  1972年   6篇
  1971年   6篇
排序方式: 共有3422条查询结果,搜索用时 15 毫秒
41.
Retinal neovascularization in retinopathy of prematurity (ROP) is the most common cause of blindness for children. Despite evidence that hypoxia inducible factor (HIF)‐1α ‐VEGF axis is associated with the pathogenesis of ROP, the inhibitors of HIF‐1α have not been established as a therapeutic target in the control of ROP pathophysiology. We investigated the hypothesis that degradation of HIF‐1α as a master regulator of angiogenesis in hypoxic condition, using β‐lapachone, would confer protection against hypoxia‐induced retinopathy without affecting physiological vascular development in mice with oxygen‐induced retinopathy (OIR), an animal model of ROP. The effects of β‐lapachone were examined after intraocular injection in mice with OIR. Intraocular administration of β‐lapachone resulted in significant reduction in hypoxia‐induced retinal neovascularization without retinal toxicity or perturbation of developmental retinal angiogenesis. Our results demonstrate that HIF‐1α–mediated VEGF expression in OIR is associated with pathological neovascularization, not physiological angiogenesis. Thus, strategies blocking HIF‐1α in the developing eye in the pathological hypoxia could serve as a novel therapeutic target for ROP.  相似文献   
42.
It has long been recognized that oncogenic viruses often integrate close to common fragile sites. The papillomavirus E2 protein, in complex with BRD4, tethers the viral genome to host chromatin to ensure persistent replication. Here, we map these targets to a number of large regions of the human genome and name them Persistent E2 and BRD4-Broad Localized Enrichments of Chromatin or PEB-BLOCs. PEB-BLOCs frequently contain deletions, have increased rates of asynchronous DNA replication, and are associated with many known common fragile sites. Cell specific fragile sites were mapped in human C-33 cervical cells by FANCD2 ChIP-chip, confirming the association with PEB-BLOCs. HPV-infected cells amplify viral DNA in nuclear replication foci and we show that these form adjacent to PEB-BLOCs. We propose that HPV replication, which hijacks host DNA damage responses, occurs adjacent to highly susceptible fragile sites, greatly increasing the chances of integration here, as is found in HPV-associated cancers.  相似文献   
43.
pullulan, a water soluble extracellular polysaccharide, was produced by downstream fermentation employing the strain Aureobasidium pullulans. To obtain pure biopolymer from the fermentation broth, it is necessary to harvest cells, heat the broth, remove the melanin pigments co-produced during fermentation, concentration, precipitate and dry. Centrifugation of the fermentation broth at 10,000 rpm for 15 min gave cell pellets that were discarded and a green–black supernatant containing melanin pigment was subjected to the heat treatment at 80 °C for 20 min in order to remove the protein in the fermentation broth. The supernatant was demelanized by oxidation with hydrogen peroxide, concentrated under vacuum, precipitated with ethanol and dried at 60 °C for 30 min. This procedure produced high purity pullulan that was comparable in color and texture to the commercial samples.  相似文献   
44.
The uptake and fate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by hybrid poplars in hydroponic systems were compared and exposed leaves were leached with water to simulate potential exposure pathways from groundwater in the field. TNT was removed from solution more quickly than nitramine explosives. Most of radioactivity remained in root tissues for 14C-TNT, but in leaves for 14C-RDX and 14C-HMX. Radiolabel recovery for TNT and HMX was over 94%, but that of RDX decreased over time, suggesting a loss of volatile products. A considerable fraction (45.5%) of radioactivity taken up by whole plants exposed to 14C-HMX was released into deionized water, mostly as parent compound after 5 d of leaching. About a quarter (24.0%) and 1.2% were leached for RDX and TNT, respectively, mostly as transformed products. Leached radioactivity from roots was insignificant in all cases (< 2%). This is the first report in which small amounts of transformation products of RDX leach from dried leaves following uptake by poplars. Such behavior for HMX was reported earlier and is reconfirmed here. All three compounds differ substantially in their fate and transport during the leaching process.  相似文献   
45.
Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier‐driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail.  相似文献   
46.
Changes in process performance and the nitrifying bacterial community associated with an increase of thiocyanate (SCN) loading were investigated in a pre-denitrification process treating industrial wastewater. The increased SCN loading led to the concentration of total nitrogen (TN) in the final effluent, but increasing the internal recycling ratio as an operation parameter from 2 to 5 resulted in a 21% increase in TN removal efficiency. In the aerobic reactor, we found that the Nitrosomonas europaea lineage was the predominant ammonia oxidizing bacteria (AOB) and the percentages of the AOB population within the total bacteria increased from about 4.0% to 17% with increased SCN concentration. The increase of nitrite loading seemed to change the balance between Nitrospira and Nitrobacter, resulting in the high dominance of Nitrospira over Nitrobacter. Meanwhile, a Thiobacillus thioparus was suggested to be the main microorganism responsible for the SCN biodegradation observed in the system.  相似文献   
47.
Jang HH  Lee KO  Chi YH  Jung BG  Park SK  Park JH  Lee JR  Lee SS  Moon JC  Yun JW  Choi YO  Kim WY  Kang JS  Cheong GW  Yun DJ  Rhee SG  Cho MJ  Lee SY 《Cell》2004,117(5):625-635
Although a great deal is known biochemically about peroxiredoxins (Prxs), little is known about their real physiological function. We show here that two cytosolic yeast Prxs, cPrxI and II, which display diversity in structure and apparent molecular weights (MW), can act alternatively as peroxidases and molecular chaperones. The peroxidase function predominates in the lower MW forms, whereas the chaperone function predominates in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causes the protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, Cys(47), which serves as an efficient "H(2)O(2)-sensor" in the cells. The chaperone function of these proteins enhances yeast resistance to heat shock.  相似文献   
48.

Background

Antiretroviral therapy for HIV-2 infection is hampered by intrinsic resistance to many of the drugs used to treat HIV-1. Limited studies suggest that the integrase inhibitors (INIs) raltegravir and elvitegravir have potent activity against HIV-2 in culture and in infected patients. There is a paucity of data on genotypic variation in HIV-2 integrase that might confer intrinsic or transmitted INI resistance.

Methods

We PCR amplified and analyzed 122 HIV-2 integrase consensus sequences from 39 HIV-2–infected, INI-naive adults in Senegal, West Africa. We assessed genetic variation and canonical mutations known to confer INI-resistance in HIV-1.

Results

No amino acid-altering mutations were detected at sites known to be pivotal for INI resistance in HIV-1 (integrase positions 143, 148 and 155). Polymorphisms at several other HIV-1 INI resistance-associated sites were detected at positions 72, 95, 125, 154, 165, 201, 203, and 263 of the HIV-2 integrase protein.

Conclusion

Emerging genotypic and phenotypic data suggest that HIV-2 is susceptible to the new class of HIV integrase inhibitors. We hypothesize that intrinsic HIV-2 integrase variation at “secondary” HIV-1 INI-resistance sites may affect the genetic barrier to HIV-2 INI resistance. Further studies will be needed to assess INI efficacy as part of combination antiretroviral therapy in HIV-2–infected patients.  相似文献   
49.
50.
The growth arrest and DNA damage‐inducible beta (Gadd45β) protein have been associated with various cellular functions, but its role in progressive renal disease is currently unknown. Here, we examined the effect of Gadd45β deletion on cell proliferation and apoptosis, inflammation, and renal fibrosis in an early chronic kidney disease (CKD) mouse model following unilateral ureteral obstruction (UUO). Wild‐type (WT) and Gadd45β‐knockout (KO) mice underwent either a sham operation or UUO and the kidneys were sampled eight days later. A histological assay revealed that ablation of Gadd45β ameliorated UUO‐induced renal injury. Cell proliferation was higher in Gadd45β KO mouse kidneys, but apoptosis was similar in both genotypes after UUO. Expression of pro‐inflammatory cytokines after UUO was down‐regulated in the kidneys from Gadd45β KO mice, whereas UUO‐mediated immune cell infiltration remained unchanged. The expression of pro‐inflammatory cytokines in response to LPS stimulation decreased in bone marrow‐derived macrophages from Gadd45β KO mice compared with that in WT mice. Importantly, UUO‐induced renal fibrosis was ameliorated in Gadd45β KO mice unlike in WT mice. Gadd45β was involved in TGF‐β signalling pathway regulation in kidney fibroblasts. Our findings demonstrate that Gadd45β plays a crucial role in renal injury and may be a therapeutic target for the treatment of CKD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号