首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3448篇
  免费   195篇
  国内免费   4篇
  3647篇
  2024年   9篇
  2023年   11篇
  2022年   49篇
  2021年   68篇
  2020年   46篇
  2019年   69篇
  2018年   115篇
  2017年   71篇
  2016年   137篇
  2015年   195篇
  2014年   223篇
  2013年   249篇
  2012年   309篇
  2011年   279篇
  2010年   195篇
  2009年   189篇
  2008年   233篇
  2007年   200篇
  2006年   146篇
  2005年   147篇
  2004年   115篇
  2003年   115篇
  2002年   84篇
  2001年   76篇
  2000年   83篇
  1999年   53篇
  1998年   17篇
  1997年   17篇
  1996年   11篇
  1995年   12篇
  1994年   5篇
  1993年   9篇
  1992年   13篇
  1991年   15篇
  1990年   16篇
  1989年   14篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1985年   8篇
  1984年   2篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
  1978年   3篇
  1975年   2篇
  1974年   2篇
  1972年   2篇
  1970年   1篇
  1969年   3篇
排序方式: 共有3647条查询结果,搜索用时 0 毫秒
41.
A meta-cleavage pathway for the aerobic degradation of aromatic hydrocarbons is catalyzed by extradiol dioxygenases via a two-step mechanism: catechol substrate binding and dioxygen incorporation. The binding of substrate triggers the release of water, thereby opening a coordination site for molecular oxygen. The crystal structures of AkbC, a type I extradiol dioxygenase, and the enzyme substrate (3-methylcatechol) complex revealed the substrate binding process of extradiol dioxygenase. AkbC is composed of an N-domain and an active C-domain, which contains iron coordinated by a 2-His-1-carboxylate facial triad motif. The C-domain includes a β-hairpin structure and a C-terminal tail. In substrate-bound AkbC, 3-methylcatechol interacts with the iron via a single hydroxyl group, which represents an intermediate stage in the substrate binding process. Structure-based mutagenesis revealed that the C-terminal tail and β-hairpin form part of the substrate binding pocket that is responsible for substrate specificity by blocking substrate entry. Once a substrate enters the active site, these structural elements also play a role in the correct positioning of the substrate. Based on the results presented here, a putative substrate binding mechanism is proposed.  相似文献   
42.
Several studies have shown that repeated stressful experiences during childhood increases the likelihood of developing depression- and anxiety-related disorders in adulthood; however, the underlying mechanisms are not well understood. We subjected drd3-EGFP and drd3-null mice to daily, two hour restraint stress episodes over a five day period during preadolescence (postnatal day 35 to 39), followed by social isolation. When these mice reached adulthood (post-natal day > 90), we assessed locomotor behavior in a novel environment, and assessed depression-related behavior in the Porsolt Forced Swim test. We also measured the expression and function of dopamine D3 receptor in limbic brain areas such as hippocampus, nucleus accumbens and amygdala in control and stressed drd3-EGFP mice in adulthood. Adult male mice subjected to restraint stress during preadolescence exhibited both anxiety- and depression-related behaviors; however, adult female mice subjected to preadolescent restraint stress exhibited only depression-related behaviors. The development of preadolescent stress-derived psychiatric disorders was blocked by D3 receptor selective antagonist, SB 277011-A, and absent in D3 receptor null mice. Adult male mice that experienced stress during preadolescence exhibited a loss of D3 receptor expression and function in the amygdala but not in hippocampus or nucleus accumbens. In contrast, adult female mice that experienced preadolescent stress exhibited increased D3 receptor expression in the nucleus accumbens but not in amygdala or hippocampus. Our results suggest that the dopamine D3 receptor is centrally involved in the etiology of adult anxiety- and depression-related behaviors that arise from repeated stressful experiences during childhood.  相似文献   
43.
Subdural cortical stimulation (SuCS) is a method used to inject electrical current through electrodes beneath the dura mater, and is known to be useful in treating brain disorders. However, precisely how SuCS must be applied to yield the most effective results has rarely been investigated. For this purpose, we developed a three-dimensional computational model that represents an anatomically realistic brain model including an upper chest. With this computational model, we investigated the influence of stimulation amplitudes, electrode configurations (single or paddle-array), and white matter conductivities (isotropy or anisotropy). Further, the effects of stimulation were compared with two other computational models, including an anatomically realistic brain-only model and the simplified extruded slab model representing the precentral gyrus area. The results of voltage stimulation suggested that there was a synergistic effect with the paddle-array due to the use of multiple electrodes; however, a single electrode was more efficient with current stimulation. The conventional model (simplified extruded slab) far overestimated the effects of stimulation with both voltage and current by comparison to our proposed realistic upper body model. However, the realistic upper body and full brain-only models demonstrated similar stimulation effects. In our investigation of the influence of anisotropic conductivity, model with a fixed ratio (1∶10) anisotropic conductivity yielded deeper penetration depths and larger extents of stimulation than others. However, isotropic and anisotropic models with fixed ratios (1∶2, 1∶5) yielded similar stimulation effects. Lastly, whether the reference electrode was located on the right or left chest had no substantial effects on stimulation.  相似文献   
44.
Applied Microbiology and Biotechnology - Resistant starch (RS) in the diet reaches the large intestine without degradation, where it is decomposed by the commensal microbiota. The fermentation of...  相似文献   
45.
Fibroblast growth factor binding protein 1 (FGFBP1) is expressed in various tumors and may serve as a diagnostic marker and/or a therapeutic target. Previous studies suggested FGFBP1 functions as an angiogenic switch molecule by regulating the activity of FGF2, and it was later found to associate with a broad spectrum of FGFs. To study FGFBP1, we used zebrafish, in which the function of extracellular matrix protein can be easily studied in intact tissues or organisms. When Fgfbp1 expression was knocked down, morphants manifested massive cell death and structural abnormalities. Cell death was most prominent in the brain and the neural tube, but not limited to those regions. These findings suggest that the primary function of Fgfbp1 may be to sustain cellular survival throughout embryogenesis. For comparison, the expression of fgf2 was limited to the early stage of embryogenesis and fgf2 morphants showed more severe phenotype, with high morbidity before reaching 14-somites. Taken together, our work reveals the physiologic function of Fgfbp1, and that its function could be exerted in a Fgf2-independent manner.  相似文献   
46.
47.
The influenza virus is one of the major public health threats. However, the development of efficient vaccines and therapeutic drugs to combat this virus is greatly limited by its frequent genetic mutations. Because of this, targeting the host factors required for influenza virus replication may be a more effective strategy for inhibiting a broader spectrum of variants. Here, we demonstrated that inhibition of a motor protein kinesin family member 18A (KIF18A) suppresses the replication of the influenza A virus (IAV). The expression of KIF18A in host cells was increased following IAV infection. Intriguingly, treatment with the selective and ATP-competitive mitotic kinesin KIF18A inhibitor BTB-1 substantially decreased the expression of viral RNAs and proteins, and the production of infectious viral particles, while overexpression of KIF18A enhanced the replication of IAV. Importantly, BTB-1 treatment attenuated the activation of AKT, p38 MAPK, SAPK and Ran-binding protein 3 (RanBP3), which led to the prevention of the nuclear export of viral ribonucleoprotein complexes. Notably, administration of BTB-1 greatly improved the viability of IAV-infected mice. Collectively, our results unveiled a beneficial role of KIF18A in IAV replication, and thus, KIF18A could be a potential therapeutic target for the control of IAV infection.  相似文献   
48.
49.
We carried out DNA barcoding on 24 Korean tettigonid species of 19 genera deposited in the National Institute of Biological Resources to reevaluate the preliminary identification of each specimen. Sequence divergence of DNA barcodes obtained from 113 samples of the 24 species ranged from 0 to 30.4%, the intraspecific variation was 0–7.3%, and the interspecific divergence was 1.1–30.4%; we could not examine the barcoding gap. In the neighbor‐joining tree, the branch length among individuals of Tettigonia ussuriana, Paratlanticus ussuriensis, and Hexacentrus japonicus were relatively longer than those in other species. The detailed analysis of the morphological characters and DNA barcodes of the above three species revealed that these three species represent species complexes. The T. ussuriana complex comprised T. jungi, T. uvarovi, and T. ussuriana. Paratlanticus ussuriensis cluster contained four species; one cluster was identified as P. palgongensis based on morphological characteristics, but the other three clusters, including the P. ussuriensis cluster, require further detailed taxonomic analysis. Lastly, two species clusters were identified within the Hexacentrus japonicus clade. Based on the 99% sequence similarity obtained by blast search of the NCBI GenBank database, one of the clusters was identified as H. unicolor. Thus, the DNA barcoding revealed the presence of at least three cryptic species in Korean Tettigoniidae, although more detailed taxonomic analyses are required to establish their status. Therefore, we suggest that DNA barcoding is a very useful tool for increasing the identification accuracy of insect collections.  相似文献   
50.
Fumarylacetoacetate hydrolase (FAH) superfamily proteins are found ubiquitously in microbial pathways involved in the catabolism of aromatic substances. Although extensive bioinformatic data on these proteins have been acquired, confusion caused by problems with the annotation of these proteins hinders research into determining their physiological functions. Here we classify 606 FAH superfamily proteins using a maximum likelihood (ML) phylogenetic tree, comparative gene-neighbourhood patterns and in vitro enzyme assays. The FAH superfamily proteins used for the analyses are divided into five distinct subfamilies, and two of them, FPH-A and FPH-B, contain the majority of the proteins of undefined function. These subfamilies include clusters designated FPH-I and FPH-II, respectively, which include two distinct types of fumarylpyruvate hydrolase (FPH), an enzyme involved in the final step of the gentisate pathway. We determined the crystal structures of these FPH enzymes at 2.0 Å resolutions and investigate the substrate binding mode by which these types of enzymes can accommodate fumarylpyruvate as a substrate. Consequentially, we identify the molecular signatures of the two types of FPH enzymes among the broadly conserved FAH superfamily proteins. Our studies allowed us to predict the relationship of unknown FAH superfamily proteins using their sequence information.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号