首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   0篇
  2021年   2篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   8篇
  2008年   17篇
  2007年   11篇
  2006年   11篇
  2005年   6篇
  2004年   3篇
  2003年   7篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
排序方式: 共有113条查询结果,搜索用时 328 毫秒
101.
We showed that dextromethorphan (DM) provides neuroprotective/anticonvulsant effects and that DM and its major metabolite, dextrorphan, have a high-affinity for sigma(1) receptors, but a low affinity for sigma(2) receptors. In addition, we found that DM has a higher affinity than DX for sigma(1) sites, whereas DX has a higher affinity than DM for PCP sites. We extend our earlier findings by showing that DM attenuated trimethyltin (TMT)-induced neurotoxicity (convulsions, hippocampal degeneration and spatial memory impairment) in rats. This attenuation was reversed by the sigma(1) receptor antagonist BD 1047, but not by the sigma(2) receptor antagonist ifenprodil. DM attenuates TMT-induced reduction in the sigma(1) receptor-like immunoreactivity of the rat hippocampus, this attenuation was blocked by the treatment with BD 1047, but not by ifenprodil. These results suggest that DM prevents TMT-induced neurotoxicity, at least in part, via sigma(1) receptor stimulation.  相似文献   
102.
Rehmannia glutinosa plantlets were cultured for 4 weeks under different culture conditions to determine the optimum environment for in vitro growth and ex vitro survival. Plantlet growth increased with an increasing number of air exchanges of the culture vessel, exhibiting greatest shoot weight, total fresh weight, leaf area, and chlorophyll content at 4.4 h−1 of air exchanges. High sucrose concentration (30 g l−1) increased root weight but reduced shoot growth. Net photosynthetic rates of the plantlets were greatest when sucrose was not added to the medium. On the other hand, ex vitro survival of the plantlets was not influenced by sucrose concentration. In the experiment on difference in photoperiod and dark period temperatures (DIF) and photosynthetic photon flux (PPF), plantlet growth increased as DIF and PPF levels increased. Particularly, increasing PPF level had a more distinctive effect on plantlet growth than increasing DIF level. The interaction of DIF × PPF was also significant, showing the greatest plantlet growth in positive DIF (+8 DIF) and a high PPF (210 μmol m−2 s−1). In conclusion, the results of this experiment suggest that increased number of air exchanges of the culture vessel, decreased sucrose concentration, and positive DIF in combination with high PPF level enhanced growth and acclimatization of Rehmannia glutinosa plantlets. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
103.
Summary The application of bioreactor culture techniques for plant micropropagation is regarded as one of the ways to reduce production cost by scaling-up and automation. Recent experiments are restricted to a small number of species that, however, demonstrate the feasibility of this technology. Periodic immersion liquid culture using ebb and flood system and column-type bubble bioreactors equipped with a raft support system to maintain plant tissues at the air and liquid interface were found to be suitable for micropropagation of plants via the organogenic pathway. Balloon-type bubble bioreactors proved to be fit for micropropagation via somatic embryogenesis with less shear stress on cultured cells. Several cultivars of Lilium were successfully propagated using a two-stage culture method in one bioreactor. A large number of small-scale segments were cultured for 4 wk with periodic immersion liquid culture to induce multiple bulblets from each segment, then the bulblet induction medium was changed into bulblet growth medium by employing a submerged liquid bioreactor system. This culture method resulted in a nearly 10-fold increase in bulblet growth compared to conventional culture with solid medium. About 20 000 cuttings of virus-free potato could be obtained from 120 singlenode explants in a 20-liter balloon-type bubble bioreactor after 8 wk of culture. The percentage of ex vitro survival and root induction of the cuttings was more than 95%. Other successful results were obtained from the micropropagation and transplant production of chrysanthemum, sweetpotato, Chinese foxglove. Propagation systems via somatic embryogenesis in Acanthopanax koreanum and thornless Aralia elata were established using a liquid suspension of embryogenic determined cells. More than 500 000 somatic embryos in different stages were harvested from a 10-liter balloon-type bubble bioreactor after a 6-wk culture. Further development of these embryos in solid medium and eventually in the field was successful. The bioreactor system could reduce initial and operational cost for micropropagation, but further development of sophisticated technology might be needed to apply this system to plant micropropagation industries.  相似文献   
104.
The involvement of NO in O2 ·− generation, rootlet development and antioxidant defence were investigated in the adventitious root cultures of mountain ginseng. Treatments of NO producers (SNP, sodium nitroprusside; SNAP, S-nitroso-N-acetylpenicillamine; and sodium nitrite with ascorbic acid), and NO scavenger (PTIO, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl3-oxide) revealed that NO is involved in the induction of new rootlets. Severe decline in number of new rootlets compared to the control under PTIO treatment indicates that NO acts downstream of auxin action in the process. NO producers (SNP, SNAP and sodium nitrite with ascorbic acid) activated NADPH oxidase activity, resulting in greater O2 ·− generation and higher number of new rootlets in the adventitious root explants. Moreover, treatment of diphenyliodonium chloride, a NADPH oxidase inhibitor, individually or along with SNP, inhibited root growth, NADPH oxidase activity and O2 ·− anion generation. NO supply also enhanced the activities of antioxidant enzymes that are likely to be responsible for reducing H2O2 levels and lipid peroxidation as well as modulation of ascorbate and non-protein thiol concentrations in the adventitious roots. Our results suggest that NO-induced generation of O2 ·− by activating NADPH oxidase activity is related to adventitious root formation in mountain ginseng.  相似文献   
105.
Nitric oxide (NO) is a highly reactive, membrane-permeable free radical, which has recently emerged as an important signalling molecule and antioxidant. Here we investigated the protective effect of NO against the toxicity caused by excess CuSO4 (50 μM) in the adventitious roots of mountain ginseng. It was found that NO donor, sodium nitroprusside (SNP), was effective in reducing Cu-induced toxicity in the mountain ginseng adventitious roots. Protective effect of SNP, as indicated by extent of lipid peroxidation, was reversed by incorporation of 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (CPTIO), a NO scavenger, in the medium suggesting that the protective effect of SNP is attributable to NO released, which was revealed from in situ confocal laser scanning microscopic localization of NO in the adventitious roots of mountain ginseng. Results obtained in the present study suggest that reduction of excess Cu-induced toxicity by SNP is most likely mediated through the modulation in the activities of antioxidant enzymes involved in H2O2 detoxification (catalase, peroxidase, ascorbate peroxidase) and in the maintenance of cellular redox couples (glutathione reductase), and contents of molecular antioxidants (particularly non-protein thiol, ascorbate and its redox status). Exogenous NO supply also improved the activity of superoxide dismutase, an enzyme responsible for O2 ·− dismutation, and NADPH oxidase, an enzyme responsible for O2 ·− generation, in excess Cu supplied adventitious roots of mountain ginseng.  相似文献   
106.
Adventitious roots ofPanax ginseng C.A. Meyer (a natural tetraploid) were treated with 50 or 100 mg L-1 colchicine for 12, 24,36, 48, or 60 h to induce polyploid (octoploid) roots. The largest number of octoploid roots was obtained with a 100 mg L-1 colchicine treatment over 60 h. To verify that ginsenoside was being accumulated in the developing tissues, the tetraploid (control) and octoploid roots were cultured for 40 d in Murashige and Skoog media that lacked NH4NO3 but was supplemented with 2 mg L-1 naphthaleneacetic acid and 50 g L-1 sucrose. Levels of fresh and dry biomass were greater in the octoploid roots. Although total ginsenoside and Rb-group ginsenoside contents were less in the octoploid roots than in the tetraploids, the former had a higher amount of Rg-group ginsenosides (especially Rg1). These results demonstrate the benefit that polyploid adventitious roots provide in enhancing the production of secondary metabolites in ginseng.  相似文献   
107.
108.
We investigated whether a specific serotonin (5-HT) receptor-mediated mechanism was involved in dextromethorphan (DM)-induced serotonergic behaviors. We firstly observed that the activation of 5-HT1A receptor, but not 5-HT2A receptor, contributed to DM-induced serotonergic behaviors in mice. We aimed to determine whether the upregulation of 5-HT1A receptor induced by DM facilitates the specific induction of certain PKC isoform, because previous reports suggested that 5-HT1A receptor activates protein kinase C (PKC). A high dose of DM (80 mg/kg, i.p.) induced a selective induction of PKCδ out of PKCα, PKCβI, PKCβII, PKCξ, and PKCδ in the hypothalamus of wild-type (WT) mice. More importantly, 5-HT1A receptor co-immunoprecipitated PKCδ in the presence of DM. Consistently, rottlerin, a pharmacological inhibitor of PKCδ, or PKCδ knockout significantly protected against increases in 5-HT1A receptor gene expression, 5-HT turnover rate, and serotonergic behaviors induced by DM. Treatment with DM resulted in an initial increase in nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation and DNA-binding activity, γ-glutamylcysteine (GCL) mRNA expression, and glutathione (GSH) level. This compensative induction was further potentiated by rottlerin or PKCδ knockout. However, GCL mRNA and GSH/GSSG levels were decreased 6 and 12 h post-DM. These decreases were attenuated by PKCδ inhibition. Our results suggest that interaction between 5-HT1A receptor and PKCδ is critical for inducing DM-induced serotonergic behaviors and that inhibition of PKCδ attenuates the serotonergic behaviors via downregulation of 5-HT1A receptor and upregulation of Nrf2-dependent GSH synthesis.  相似文献   
109.
Synthetic oligodeoxynucleotides (ODNs) containing unmethylated CpG phosphorothioate (PS CpG-ODN) are known to decrease IgE synthesis in Th2 allergy responses. Nonetheless, the therapeutic role of PS CpG-ODN is limited due to cytotoxicity. Therefore, we developed a phosphodiester (PO) form of CpG-ODN (46O) with reduced toxicity but effective against allergies. In this study, we first compared the toxicity of 46O with CpG-ODNs containing a PS backbone (1826S). We also investigated the therapeutic efficacy and mechanism of 46O injected intravenously in a mouse model of ovalbumin (OVA)-induced atopic dermatitis (AD). To elucidate the mechanism of 46O underlying the inhibition of IgE production, IgE- and TGF-β-associated molecules were evaluated in CD40/IL-4- or LPS/IL-4-stimulated B cells. Our data showed that the treatment with 46O was associated with a lower hematological toxicity compared with 1826S. In addition, injection with 46O reduced erythema, epidermal thickness, and suppressed IgE and IL-4 synthesis in mice with OVA-induced AD. Additionally, 46O induced TGF-β production in LPS/IL-4-stimulated B cells via inhibition of Smad7, which suppressed IgE synthesis via interaction between Id2 and E2A. These findings suggest that enhanced TGF-β signaling is an effective treatment for IgE-mediated allergic conditions, and 46O may be safe and effective for treating allergic diseases such as AD and asthma.  相似文献   
110.
Embryonic stem cell testing is an alternative model system to assess drug and chemical toxicities because of its similar developmental characteristics with in vivo embryogenesis and organogenesis. This study evaluated the toxicity of chemicals at specific developmental stages of mouse embryonic stem cell (ESC)-derived hepatic differentiation; hepatic progenitor cells (HPCs), and hepatocyte-like cells (HCs). The toxic effects of carbon tetrachloride (CCl4), 5-fluorouracil (5-FU), and arsanilic acid (Ars) were evaluated by measuring the expressions of Cytokeratin (CK18) and GATA binding protein 4 (GATA-4) and the activities of aspartate transaminase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) during the hepatic differentiation process. Non-toxic doses of three chemicals at a range of 25 to 500 μM for CCl4, 12.5 to 800 nM for 5-FU and 6.25 to 400 mM for Ars were treated. In the CCl4-treated group, significant decreases (P?<?0.05) of the marker expression were observed by more than 300 μM from day 10 in CK18 and by more than 400 μM of CCl4 from day 22 in GATA-4, respectively. However, both markers were decreased (P?<?0.01) by treatments of all doses at day 40. In the 5-FU-treated group, the expressions of two proteins were not affected by any of the doses at day 10 and 22, whereas the GATA-4 expression was decreased (P?<?0.05) by more than 400 nM of 5-FU at days 28 and 40. In the Ars-treated group, the CK18 expression was inhibited (P?<?0.05) by more than 100 mM of Ars at day 22 but showed a tendency to recover. Although the GATA-4 was inhibited by all doses at day 22, the inhibition of GATA-4 recovered at days 28 and 40. ALP activities of three chemicals were significantly increased (P?<?0.05) by a dose-dependent manner. The activities of AST and LDH were prone to be increased by more than 300 μM of CCl4, but not affected by all doses of 5-FU except for 800 nM of 5-FU in AST activities. In the Ars, the enzyme activities were significantly increased (P?<?0.05) by more than 50 μM of Ars in AST and more than 6.25 μM of Ars in LDH. The present results indicate that CCl4 has a more toxic effect on HCs, whereas Ars is more toxic to HPCs. Additionally, in vitro alternative testing using ESC-derived HPCs and HCs could provide useful information on chemical toxicity during the hepatic differentiation process and could be a useful model system for assessing chemical hepatotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号