首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15689篇
  免费   1045篇
  国内免费   11篇
  16745篇
  2024年   25篇
  2023年   68篇
  2022年   187篇
  2021年   310篇
  2020年   193篇
  2019年   276篇
  2018年   399篇
  2017年   326篇
  2016年   570篇
  2015年   846篇
  2014年   998篇
  2013年   1056篇
  2012年   1386篇
  2011年   1337篇
  2010年   859篇
  2009年   685篇
  2008年   1059篇
  2007年   894篇
  2006年   791篇
  2005年   739篇
  2004年   750篇
  2003年   600篇
  2002年   497篇
  2001年   386篇
  2000年   347篇
  1999年   245篇
  1998年   111篇
  1997年   89篇
  1996年   61篇
  1995年   53篇
  1994年   49篇
  1993年   31篇
  1992年   85篇
  1991年   57篇
  1990年   46篇
  1989年   52篇
  1988年   30篇
  1987年   28篇
  1986年   22篇
  1985年   23篇
  1984年   17篇
  1983年   15篇
  1982年   12篇
  1981年   14篇
  1980年   11篇
  1979年   9篇
  1978年   15篇
  1977年   7篇
  1975年   15篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
82.
A single episode of ethanol intoxication triggers widespread apoptotic neurodegeneration in the infant rat or mouse brain. The cell death process occurs over a 6-16 h period following ethanol administration, is accompanied by a robust display of caspase-3 enzyme activation, and meets ultrastructural criteria for apoptosis. Two apoptotic pathways (intrinsic and extrinsic) have been described, either of which may culminate in the activation of caspase-3. The intrinsic pathway is regulated by Bax and Bcl-XL and involves Bax-induced mitochondrial dysfunction and release of cytochrome c as antecedent events leading to caspase-3 activation. Activation of caspase-8 is a key event preceding caspase-3 activation in the extrinsic pathway. In the present study, following ethanol administration to infant mice, we found no change in activated caspase-8, which suggests that the extrinsic pathway is not involved in ethanol-induced apoptosis. We also found that ethanol triggers robust caspase-3 activation and apoptotic neurodegeneration in C57BL/6 wildtype mice, but induces neither phenomenon in homozygous Bax-deficient mice. Therefore, it appears that ethanol-induced neuroapoptosis is an intrinsic pathway-mediated phenomenon involving Bax-induced disruption of mitochondrial membranes and cytochrome c release as early events leading to caspase-3 activation.  相似文献   
83.
84.
Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.  相似文献   
85.
The endoplasmic reticulum (ER) plays essential roles indispensable for cellular activity and survival, including functions such as protein synthesis, secretory and membrane protein folding, and Ca2+ release in cells. The ER is sensitive to stresses that can lead to the aggregation and accumulation of misfolded proteins, which eventually triggers cellular dysfunction; severe or prolonged ER stress eventually induces apoptosis. ER stress-induced apoptosis causes several devastating diseases such as atherosclerosis, neurodegenerative diseases, and diabetes. In addition, the production of biopharmaceuticals such as monoclonal antibodies requires the maintenance of normal ER functions to achieve and maintain the production of high-quality products in good quantities. Therefore, it is necessary to develop methods to efficiently relieve ER stress and protect cells from ER stress-induced apoptosis. The silkworm storage protein 1 (SP1) has anti-apoptotic activities that inhibit the intrinsic mitochondrial apoptotic pathway. However, the role of SP1 in controlling ER stress and ER stress-induced apoptosis has not been investigated. In this paper, we demonstrate that SP1 can inhibit apoptosis induced by a well-known ER stress inducer, thapsigargin, by alleviating the decrease in cell viability and mitochondrial membrane potential. Interestingly, SP1 significantly blocked increases in CHOP and GRP78 expression as well as ER Ca2+ leakage into the cytosol following ER stress induction. This indicates that SP1 protects cells from ER stressinduced apoptosis by functioning as an upstream inhibitor of apoptosis. Therefore, studying SP1 function can offer new insights into protecting cells against ER stress-induced apoptosis for future applications in the biopharmaceutical and medicine industries.  相似文献   
86.
Human embryonic stem (hES) cells are usually established and maintained on mouse embryonic fibroblast (MEFs) feeder layers. However, it is desirable to develop human feeder cells because animal feeder cells are associated with risks such as viral infection and/or pathogen transmission. In this study, we attempted to establish new hES cell lines using human uterine endometrial cells (hUECs) to prevent the risks associated with animal feeder cells and for their eventual application in cell-replacement therapy. Inner cell masses (ICMs) of cultured blastocysts were isolated by immunosurgery and then cultured on mitotically inactivated hUEC feeder layers. Cultured ICMs formed colonies by continuous proliferation and were allowed to proliferate continuously for 40, 50, and 55 passages. The established hES cell lines (Miz-hES-14, -15, and -9, respectively) exhibited typical hES cells characteristics, including continuous growth, expression of specific markers, normal karyotypes, and differentiation capacity. The hUEC feeders have the advantage that they can be used for many passages, whereas MEF feeder cells can only be used as feeder cells for a limited number of passages. The hUECs are available to establish and maintain hES cells, and the high expression of embryotrophic factors and extracellular matrices by hUECs may be important to the efficient growth of hES cells. Clinical applications require the establishment and expansion of hES cells under stable xeno-free culture systems.  相似文献   
87.
Although pathogenic mechanisms of tuberculosis have been extensively studied, little is known about the pathogenic mechanisms of Mycobacterium kansasii. In this work the influence of virulence and ER-stress mediated apoptosis of macrophages during two different strains of M. kansasii infection was investigated. We show that M. kansasii infection is associated with ER stress-mediated apoptosis in the murine macrophage cell line RAW 264.7. Infection of RAW 264.7 cells in vitro with apoptosis-inducing a clinical isolate of M. kansasii SM-1 (SM-1) resulted in strong induction of ER stress responses compared with M. kansasii type strain (ATCC 12478)-infected RAW 264.7 cells. Interestingly, inhibition of calpain prevented the induction of CHOP and Bip in ATCC 12478-infected RAW 264.7 cells but not in RAW 264.7 cells infected with SM-1. In contrast, reactive oxygen species (ROS) were significantly increased only in RAW 264.7 cells infected with SM-1. We propose that ROS generation is important for triggering ER stress-mediated apoptosis during SM-1 infection, whereas ATCC 12478-induced, ER stress-mediated apoptosis is associated with calpain activation. Our results demonstrate that the ER stress pathway plays important roles in the pathogenesis of M. kansasii infections, and that different strains of M. kansasii induce different patterns of ER stress-mediated apoptosis.  相似文献   
88.
Fascin, as a substrate of protein kinase C (PKC), is a well-known cytoskeletal regulatory protein required for cell migration, invasion, and adhesion in normal and cancer cells. In an effort to identify the role of fascin in PKC-mediated cellular signaling, its expression was suppressed by stable transfection of specific short hairpin RNAs (shRNAs) in mouse monocytic leukemia RAW264.7 cells. Suppression of fascin expression resulted in impaired cellular migration and invasion through extracellular matrix proteins. Unexpectedly, the specific shRNA transfectants exhibited a marked reduction in LPS-induced expression of TNF-α and IL-6 by blocking the translation of their mRNAs. Transient transfection assay using a luciferase expression construct containing the 3' untranslated region of TNF-α or IL-6 mRNA revealed a significant reduction in both LPS- and PMA- (the direct activator of PKC) induced reporter activity in cells transfected with fascin-specific shRNA, indicating that fascin-mediated translational regulation targeted 3' untranslated region. Furthermore, LPS-induced translational activation of reporter expression was blocked by a pharmacological inhibitor of PKC, and the dominant-negative form of PKCα attenuated LPS-induced translational activation. The same type of regulation was also observed in the human monocytic leukemia cell line THP-1 and in mouse peritoneal macrophages. These data demonstrate the involvement of fascin in the PKC-mediated translational regulation of TNF-α and IL-6 expression during the LPS response.  相似文献   
89.
This study was performed to determine the effects of dietary perilla oil, a n-3 alpha-linolenic acid (ALA) source, on hepatic lipogenesis as a possible mechanism of lowering triacylglycerol (TG) levels. Male Sprague-Dawley rats were trained for a 3-hour feeding protocol and fed one of five semipurified diets as follows: 1% (w/w) corn oil control diet, or one of four diets supplemented with 10% each of beef tallow, corn oil, perilla oil, and fish oil. Two separate experiments were performed to compare the effects of feeding periods, 4 weeks and 4 days. Hepatic and plasma TG levels were decreased in rats fed perilla oil and fish oil diets, compared with corn oil and beef tallow diets. The activities of hepatic lipogenic enzymes such as fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase, and malic enzyme were suppressed in the fish oil, perilla oil, and corn oil-fed groups, and the effect was the most significant in the fish oil-fed group. Also, the activities of glycolytic enzymes, glucokinase, and L-pyruvate kinase showed the similar trend as that of lipogenic enzymes. The activity of FAS, the key regulatory enzyme in lipogenesis, was positively correlated with hepatic and plasma TG levels and reduced significantly in the perilla oil-fed group compared with corn oil-fed group. In addition, the FAS activity was negatively correlated with the hepatic microsomal content of EPA and DHA. In conclusion, suppression of FAS plays a significant role in the hypolipidemic effects observed in rats fed ALA rich perilla oil and these effects were associated with the increase of hepatic microsomal EPA and DHA contents.  相似文献   
90.
Currently, obesity is considered a systemic inflammation; however, the effects of obesity on the vulnerability of dopaminergic neurons to oxidative stress are not fully defined. We evaluated the effects of high-fat diet-induced obesity (HF DIO) on neurotoxicity in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Eight weeks after a HF or matched normal diet, a severe decrease in the levels of striatal dopamine and of nigral microtubule-associated protein 2, manganese superoxide dismutase, and tyrosine hydroxylase was observed in obese mice treated with subtoxic doses of MPTP (20 mg/kg) compared with the matched lean group. In addition, the levels of nitrate/nitrite and thiobarbituric acid-malondialdehyde adducts in the substantia nigra of obese mice were reciprocally elevated or suppressed by MPTP. Interestingly, striatal nNOS phosphorylation and dopamine turnover were elevated in obese mice after MPTP treatment, but were not observed in lean mice. The nitrotyrosine immunoreactivity for evaluation of nigral nitrogenous stress in obese mice with MPTP was higher than that in matched lean mice. At higher doses of MPTP (60 mg/kg), the mortality was higher in obese mice than in lean mice. These results suggest that DIO may increase the vulnerability of dopaminergic neurons to MPTP via increased levels of reactive oxygen and nitrogen species, and the role of nNOS phosphorylation in the MPTP toxicities and dopamine homeostasis should be further evaluated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号