首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30284篇
  免费   2211篇
  国内免费   14篇
  32509篇
  2023年   96篇
  2022年   347篇
  2021年   581篇
  2020年   356篇
  2019年   470篇
  2018年   773篇
  2017年   585篇
  2016年   1018篇
  2015年   1590篇
  2014年   1781篇
  2013年   1962篇
  2012年   2563篇
  2011年   2417篇
  2010年   1588篇
  2009年   1328篇
  2008年   1948篇
  2007年   1676篇
  2006年   1476篇
  2005年   1388篇
  2004年   1350篇
  2003年   1114篇
  2002年   1056篇
  2001年   804篇
  2000年   798篇
  1999年   555篇
  1998年   231篇
  1997年   181篇
  1996年   151篇
  1995年   134篇
  1994年   125篇
  1993年   100篇
  1992年   213篇
  1991年   177篇
  1990年   149篇
  1989年   146篇
  1988年   107篇
  1987年   98篇
  1986年   99篇
  1985年   92篇
  1984年   77篇
  1983年   65篇
  1982年   47篇
  1981年   47篇
  1979年   43篇
  1978年   41篇
  1976年   44篇
  1975年   44篇
  1973年   52篇
  1971年   46篇
  1970年   39篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
171.
Sialidases release the terminal sialic acid residue from a wide range of sialic acid-containing polysaccharides. Bacteroides thetaiotaomicron, a symbiotic commensal microbe, resides in and dominates the human intestinal tract. We characterized the recombinant sialidase from B. thetaiotaomicron (BTSA) and demonstrated that it has broad substrate specificity with a relative activity of 97, 100 and 64 for 2,3-, 2,6- and 2,8-linked sialic substrates, respectively. The hydrolysis activity of BTSA was inhibited by a transition state analogue, 2-deoxy-2,3-dehydro-N-acetyl neuraminic acid, by competitive inhibition with a Ki value of 35 μM. The structure of BSTA was determined at a resolution of 2.3 Å. This structure exhibited a unique carbohydrate-binding domain (CBM) at its N-terminus (a.a. 23–190) that is adjacent to the catalytic domain (a.a. 191–535). The catalytic domain has a conserved arginine triad with a wide-open entrance for the substrate that exposes the catalytic residue to the surface. Unlike other pathogenic sialidases, the polysaccharide-binding site in the CBM is near the active site and possibly holds and positions the polysaccharide substrate directly at the active site. The structural feature of a wide substrate-binding groove and closer proximity of the polysaccharide-binding site to the active site could be a unique signature of the commensal sialidase BTSA and provide a molecular basis for its pharmaceutical application.  相似文献   
172.
173.
The objective of this study was to investigate the difference in electrophoretic mobility between partially and fully poly(ethylene glycol)-conjugated poly(amidoamine) dendrimers (part-PEG-PAMAM and full-PEG-PAMAM, respectively) using a microchip capillary gel electrophoresis (MCGE). While MCGE allowed size-based separation of PEG-PAMAMs prepared with monomethoxy PEG-nitrophenyl carbonate, full-PEG-PAMAMs migrated slower than part-PEG-PAMAMs that were similar in size or larger. When the measured molecular weights obtained from MCGE analysis and the calculated molecular weights were plotted, each part-PEG-PAMAM and full-PEG-PAMAM showed correlation coefficients greater than 0.98. This study indicates that MCGE would be useful for characterizing PEG-PAMAMs with different PEGylation degrees.  相似文献   
174.
Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome.In-depth characterization and quantitation of protein isoforms, including post-translationally modified proteins, are challenging goals of contemporary proteomics. Traditionally, top-down (1, 2) and bottom-up (3, 4) proteomics have been two distinct analytical paths for liquid-based proteomics analysis. Top-down proteomics is the mass spectrometry (MS)-based characterization of intact proteins, whereas bottom-up proteomics requires a chemical or enzymatic proteolytic digestion of all proteins into peptides prior to MS analysis. Both strategies have their own strengths and challenges and can be thought of as complementary rather than competing analytical techniques.In a top-down proteomics approach, proteins are usually separated by one- or two-dimensional liquid chromatography (LC) and identified using high performance MS (5, 6). This approach is very attractive because it allows the identification of protein isoforms arising from various amino acid modifications, genetic variants (e.g. single nucleotide polymorphisms), mRNA splice variants, and multisite modifications (7) (e.g. specific histone modifications) as well as characterization of proteolytic processing events. However, there are several challenges that have limited the broad application of the approach. Typically, intact proteins are less soluble than their peptide complement, which effectively results in greater losses during various stages of sample handling (i.e. limited sensitivity). Similarly, proteins above ∼40–50 kDa in size are more difficult to ionize, detect, and dissociate in most high throughput MS work flows. Additionally, major challenges associated with MS data interpretation and sensitivity, especially for higher molecular mass proteins (>100 kDa) and highly hydrophobic proteins (e.g. integral membrane proteins), remain largely unsolved, thus limiting the applicability of top-down proteomics on a large scale.Bottom-up proteomics approaches have broad application because peptides are easier to separate and analyze via LC coupled with tandem mass spectrometry (MS/MS), offering a basis for more comprehensive protein identification. As this method relies on protein digestion (which produces multiple peptides for each protein), the sample complexity can become exceedingly large, requiring several dimensions of chromatographic separations (e.g. strong cation exchange and/or high pH reversed phase) prior to the final LC separation (typically reversed phase (RP)1 C18), which is oftentimes directly coupled with the mass spectrometer (3, 8). In general, the bottom-up analysis rarely achieves 100% sequence coverage of the original proteins, which can result in an incorrect/incomplete assessment of protein isoforms and combinatorial PTMs. Additionally, the digested peptides are not detected with uniform efficiency, which challenges and distorts protein quantification efforts.Because the data obtained from top-down and bottom-up work flows are complementary, several attempts have been made to integrate the two strategies (9, 10). Typically, these efforts have utilized extensive fractionation of the intact protein separation followed by bottom-up analysis of the collected fractions. Results so far have encouraged us to consider on-line digestion methods for integrating top-down and bottom-up proteomics in a higher throughput fashion. Such an on-line digestion approach would not only benefit in terms of higher sample throughput and improved overall sensitivity but would also allow a better correlation between the observed intact protein and its peptide digestion products, greatly aiding data analysis and protein characterization efforts.So far, however, none of the on-line integrated methods have proven robust enough for routine high throughput analyses. One of the reasons for this limited success relates to the choice of the proteolytic enzyme used for the bottom-up segment. Trypsin is by far the most widely used enzyme for proteome analyses because it is affordable (relative to other proteases), it has been well characterized for proteome research, and it offers a nice array of detectable peptides due to a fairly even distribution of lysines and arginines across most proteins. However, protein/peptide RPLC separations (optimal at low pH) are fundamentally incompatible with on-line trypsin digestion (optimal at pH ∼ 8) (11, 12). Therefore, on-line coupling of trypsin digestion and RPLC separations is fraught with technological challenges, and proposed solutions (12) have not proven to be robust enough for integration into demanding high throughput platforms.Our approach to this challenge was to investigate alternative proteases that may be more compatible with automated on-line digestion, peptide separation, and MS detection. Pepsin, which is acid-compatible (i.e. it acts in the stomach to initially aid in the digestion of food) (13), is a particularly promising candidate. This protease has previously been successfully used for the targeted analyses of protein complexes, hydrogen/deuterium exchange experiments (14, 15), and characterization of biopharmaceuticals (16, 17). Generally, pepsin preferentially cleaves the peptide bond located on the N-terminal side of hydrophobic amino acids, such as leucine and phenylalanine, although with less specificity than the preferential cleavage observed for trypsin at arginine and lysine. The compatibility of pepsin with typical LC-MS operation makes it an ideal choice for the development of novel approaches combining protein digestion, protein/peptide separation, and MS-based protein/peptide identification.To develop an automated system capable of simultaneously capturing top-down and bottom-up data, enzyme kinetics of the chosen protease must be extremely fast (because one cannot wait hours as is typical when performing off-line proteolysis). Another requirement is the use of immobilized enzyme or a low enough concentration of the enzyme such that autolysis products do not obscure the detection of substrate peptides. The latter was a concern when using pepsin because prior hydrogen/deuterium exchange experiments used enzyme:substrate ratios up to 1:2 (18, 19). To test whether or not such a large concentration of pepsin was necessary, we performed pepsin digestion at ratios of 1:20. Many alternative energy inputs into the system were considered for speeding up the digestion. For instance, it has been shown that an input of ultrasonic energy could accelerate the reaction rate of a typical trypsin digestion while using small amounts of a protease (20). Because ultrasonic energy results in an increase of temperature and microenvironments of high pressure, it has been hypothesized that the higher temperature was the component responsible for the enhanced enzyme activity (21). López-Ferrer et al. (22, 23), however, have demonstrated that application of higher pressure with incorporation of a Barocycler alone can make trypsin display faster enzyme kinetics. This phenomenon can easily be integrated with an LC separation (which already operates at elevated pressure) to enable an automatable ultrarapid on-line digestion LC-MS proteomics platform. Herein, we refer to this platform as the fast on-line digestion system (FOLDS) (23). Although FOLDS has been described before using trypsin, here the system is characterized with pepsin, and the results obtained are compared with results attainable with trypsin. Like trypsin, pepsin produced efficient protein digestion in just a few minutes when placed under pressure. Because of the natural maximal activity of pepsin at low pH, the FOLDS can be incorporated with a RePlay (Advion Biosciences, Ithaca, NY) system, and this powerful combination is what ultimately makes the integration of top-down and bottom-up proteomics analyses possible. The integrated analysis begins with a chromatographic separation of intact proteins. The separated proteins are then split into two streams. One stream proceeds directly to the mass spectrometer for MS and/or tandem MS analysis. The second stream is split into a long capillary where the chromatographic separation of the proteins is maintained, but their arrival to the mass spectrometer for detection is delayed. This is in essence the concept of RePlay (24, 25). Herein, we have taken the RePlay a step further by implementing our FOLDS technology into the second split delayed stream of proteins. While these delayed proteins travel down the long and narrow capillary, we exposed them to pepsin where, in combination with the pressure, the proteins are quickly and reproducibly digested. These peptide fragments are subsequently subjected to MS and/or tandem MS analysis. The FOLDS RePlay system allows the rapid and robust incorporation of the integrated top-down bottom-up proteomics work flow with the ability to not only identify proteins but also to sequence multisite/combinatorial PTMs because all detected peptides (from the FOLDS analysis) are confined to the original chromatographic peak of the protein they were derived from. The analysis of protein mixtures using this integrated strategy reduces the total amount of samples required to obtain both the top-down and bottom-up data, increases throughput, and improves protein sequence coverage.  相似文献   
175.
Selenite negatively regulates caspase-3 through a redox mechanism   总被引:3,自引:0,他引:3  
Selenium, an essential biological trace element, exerts its modulatory effects in a variety of cellular events including cell survival and death. In our study we observed that selenite protects HEK293 cells from cell death induced by ultraviolet B radiation (UVB). Exposure of HEK293 cells to UVB radiation resulted in the activation of caspase-3-like protease activity, and pretreatment of the cells with z-DEVD-fmk (N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone), a caspase-3 inhibitor, prevented UVB-induced cell death. Interestingly, enzymatic activity of caspase-3-like protease in cell lysates of UVB-exposed cells was repressed in vitro by the presence of selenite. Selenite also inhibited the in vitro activity of purified recombinant caspase-3 in cleaving Ac-DEVD-pNA (N-acetyl-Asp-Glu-Asp-p-nitroanilide) or ICAD(L) (inhibitor of a caspase-activated deoxyribonuclease) and in the induction of DNA fragmentation. The inhibitory action of selenite on a recombinant active caspase-3 could be reversed by sulfhydryl reducing agents, such as dithiothreitol and beta-mercaptoethanol. Furthermore, pretreatment of cells with selenite suppressed the stimulation of the caspase-3-like protease activity in UVB-exposed cells, whereas dithiothreitol and beta-mercaptoethanol reversed this suppression of the enzymatic activity. Taken together, our data suggest that selenite inhibits caspase-3-like protease activity through a redox mechanism and that inhibition of caspase-3-like protease activity may be the mechanism by which selenite exerts its protective effect against UVB-induced cell death.  相似文献   
176.
To survive in a subzero environment, polar organisms produce ice-binding proteins (IBPs). These IBPs prevent the formation of large intracellular ice crystals, which may be fatal to the organism. Recently, a recombinant FfIBP (an IBP from Flavobacterium frigoris PS1) was cloned and produced in Pichia pastoris using fed-batch fermentation with methanol feeding. In this study, we demonstrate that FfIBP produced by P. pastoris has a glycosylation site, which diminishes the thermal hysteresis activity of FfIBP. The FfIBP expressed by P. pastoris exhibited a doublet on SDS-PAGE. The results of a glycosidase reaction suggested that FfIBP possesses complex N-linked oligosaccharides. These results indicate that the residues of the glycosylated site could disturb the binding of FfIBP to ice molecules. The findings of this study could be utilized to produce highly active antifreeze proteins on a large scale.  相似文献   
177.
178.
179.
180.
An 1H-NMR study of ferric cytochrome P450cam in different paramagnetic states was performed. Assignment of three heme methyl resonances of the isocyanide adduct of cytochrome P450 in the ferric low-spin state was recently performed using electron exchange in the presence of putidaredoxin [Mouro, C., Bondon, A., Jung, C., Hui Bon Hoa, G., De Certaines, J.D., Spencer, R.G.S. & Simonneaux, G. (1999) FEBS Lett. 455, 302-306]. In this study, heme methyl protons of cytochrome P450 in the native high-spin and low-spin states were assigned through one-dimensional and two-dimensional magnetization transfer spectroscopy using the paramagnetic signals enhancement (PASE) method. The order of the methyl proton chemical shifts is inverted between high-spin and low-spin states. The methyl order observed in the ferric low-spin isocyanide complexes is related to the orientation of the cysteinate ligand.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号