首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25322篇
  免费   1906篇
  国内免费   1074篇
  2024年   36篇
  2023年   226篇
  2022年   564篇
  2021年   1032篇
  2020年   702篇
  2019年   851篇
  2018年   1007篇
  2017年   697篇
  2016年   1114篇
  2015年   1534篇
  2014年   1744篇
  2013年   1944篇
  2012年   2299篇
  2011年   2101篇
  2010年   1340篇
  2009年   1160篇
  2008年   1511篇
  2007年   1284篇
  2006年   1138篇
  2005年   1010篇
  2004年   876篇
  2003年   783篇
  2002年   676篇
  2001年   399篇
  2000年   326篇
  1999年   322篇
  1998年   219篇
  1997年   164篇
  1996年   122篇
  1995年   125篇
  1994年   88篇
  1993年   74篇
  1992年   102篇
  1991年   97篇
  1990年   90篇
  1989年   74篇
  1988年   61篇
  1987年   54篇
  1986年   40篇
  1985年   44篇
  1984年   26篇
  1983年   24篇
  1982年   21篇
  1981年   14篇
  1979年   21篇
  1978年   16篇
  1977年   21篇
  1976年   16篇
  1975年   15篇
  1972年   15篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
Park SE  Song JD  Kim KM  Park YM  Kim ND  Yoo YH  Park YC 《FEBS letters》2007,581(2):180-186
The diphenyleneiodonium (DPI) is widely used as an inhibitor of flavoenzymes, particularly NADPH oxidase. In this study, we investigated the effect of DPI on the apoptosis of human RPE cells. DPI treatment in ARPE-19 cells evoked a dose- and time-dependent growth inhibition, and also induced DNA fragmentation and protein content of the proapoptotic factor Bax. In addition, DPI significantly induced the expression and phosphorylation of p53, which induces proapoptotic genes in response to DNA damage or irreparable cell cycle arrest. ROS have been implicated as a key factor in the activation of p53 by many chemotherapeutic drugs. Recent data on the regulation of intracellular ROS by DPI are controversial. Therefore, we analyzed whether DPI could contribute to the generation of intracellular ROS. Although there was increase in ROS level from cells treated for 24h with DPI, it was not detectable at early time points, required to induce p53 expression. And DPI-induced p53 expression was not affected by the ROS scavenger NAC. We conclude that DPI induces the expression of p53 by ROS-independent mechanism in ARPE-19 cells, and renders cells sensitive to drug-induced apoptosis by induction of p53 expression.  相似文献   
992.
993.
994.
Focal adhesion kinase (FAK) mediates signal transduction in response to multiple extracellular inputs via tyrosine phosphorylation at specific residues. Although several tyrosine phosphorylation events have been linked to FAK activation and downstream signal transduction, the function of FAK phosphorylation at Tyr(407) was previously unknown. Here, we show for the first time that phosphorylation of FAK Tyr(407) increases during serum starvation, contact inhibition, and cell cycle arrest, all conditions under which activating FAK Tyr(397) phosphorylation decreases. Transfection of NIH3T3 cells with a phosphorylation-mimicking FAK 407E mutant decreased autophosphorylation at Tyr(397) and inhibited both FAK kinase activity in vitro and FAK-mediated functions such as cell adhesion, spreading, proliferation, and migration. The opposite effects were observed in cells transfected with nonphosphorylatable mutant FAK 407F. Taken together, these data suggest the novel concept that FAK Tyr(407) phosphorylation negatively regulates the enzymatic and biological activities of FAK.  相似文献   
995.
Nitric oxide (NO) is a diffusible, gaseous signaling molecule. In plants, NO influences growth and development, and it can also affect plant responses to various stresses. Because NO induces root differentiation and interacts with reactive oxygen species, we examined the temporal effect of NO elicitation on root growth, saponin accumulation and antioxidant defense responses in the adventitious roots of mountain ginseng (Panax ginseng). The observations revealed that NO is involved in root growth and saponin production. Elicitation with sodium nitroprusside (SNP) activated O2 -generating NADPH oxidase (NOX) activity, which most probably subsequently enhanced growth of adventitious roots of mountain ginseng. A severe inhibition of NOX activity and decline in dry weight of SNP elicited adventitious roots in the presence of NOX inhibitor (diphenyl iodonium, DPI), which further supports involvement of NOX in root growth. Enhanced activities of antioxidant enzymes by SNP appear to be responsible for low H2O2, less lipid peroxidation, and modulation of ascorbate and non-protein thiol statuses in the adventitious roots of mountain ginseng. Dry mass, saponin content and NOX activity was related with NO content present in adventitious roots of mountain ginseng.  相似文献   
996.
Han B Y  Han B H 《农业工程》2007,27(11):4485-4490
Electrophysiological and behavioral responses of the wingless tea aphid, Toxoptera aurantii (Boyer), to 14 synthetic volatiles identified from tea shoots, their partial (GLV mixture) and full (ACB mixture) blends, and fresh young tea leaves, buds, tender stems, adult tea leaves and tea aphid-damaged young leaves (ADYL) were studied by using an electroantennography (EAG) and a four-arm olfactometer. ACB elicited the largest EAG responses. Major volatile components, Z-3-hexen-1-ol, E-2-hexenal, n-hexanol, methyl salicylate and benzylalcohol, from the tea shoots were strongly EAG active. All the 4 tested tea shoot tissues also elicited significant EAG responses, with the young tea leaves being the strongest, followed by buds, tender stems and adult tea leaves. Surprisingly, ADYL elicited a weakly negative EAG response. In the olfactory assays, the fresh and tender tea leaves, as well as the individual major volatile components, e.g. Z-3-hexenyl acetate, methyl salicylate, E-2-hexen-1-ol and Z-3-hexen-1-ol, from the tender shoots (EAG-active) were all attractive. This result might indicate that the wingless tea aphids may use tea shoot volatiles as kairomone to find their optimal feeding sites, e.g. fresh tender tea shoots.  相似文献   
997.
Panax japonicus is one of the important medicinal plants. Here, we established the protocol for plant regeneration of P. japonicus via direct somatic embryogenesis. Somatic embryos were directly obtained from the segments of zygotic embryos on MS medium with 4.4 μM 2,4-D. Thereafter, somatic embryos were produced by repetitive secondary somatic embryogenesis. The secondary somatic embryo formation was enhanced by plasmolyzing pretreatment (1.0 M mannitol for 10 h). Frequency of secondary somatic embryo formation from cotyledon segments was lowered by plasmolyzing pretreatment, but the number of somatic embryos per explants was greatly increased. Plasmolyzing pretreatment resulted in retardation of embryo growth and required subculture to fresh medium for further growth of embryos into cotyledonary stage. Without plasmolyzing pretreatment, cotyledonary embryos were obtained after 8 weeks of culture. All the cotyledonary somatic embryos germinated by 5 μM GA3 treatment, but only 15.3% were germinated on hormone-free medium. After 2 months of culture on 1/2 strength WPM medium, plantlets produced flowers spontaneously. In the anthers of in vitro flowers, microsporogenesis occurred normally with low number of pollen grains.  相似文献   
998.
Pyrolysis mass spectrometry (PyMS) is a rapid, simple, high-resolution analytical method based on thermal degradation of complex material in a vacuum, and has been widely applied to the discrimination of closely related microbial strains. Minimally prepared samples of embryogenic and non-embryogenic calluses derived from various higher plants (sweet potato, morning glory, Korean ginseng, Siberian ginseng, and balloon flower) were subjected to PyMS for spectral fingerprinting. A dendrogram based on the unweighted pair group method, with arithmetic mean of pyrolysis mass spectra, divided the calluses into Siberian ginseng embryogenic callus and the others, which were subsequently divided into embryogenic and non-embryogenic callus groups, regardless of plant species from which the calluses were derived. In the non-embryogenic callus group, the dendrogram was in agreement with the known taxonomy of the plants. These results indicate that PyMS analysis could be applied for discriminating plant calluses based on embryogenic capacity and taxonomic classification.  相似文献   
999.
Yang K  Zhao Z  Gross RW  Han X 《PloS one》2007,2(12):e1368

Background

Ether phospholipids are abundant membrane constituents present in electrically active tissues (e.g., heart and the brain) that play important roles in cellular function. Alterations of ether phospholipid molecular species contents are associated with a number of genetic disorders and human diseases.

Methodology/Principal Findings

Herein, the power of shotgun lipidomics, in combination with high mass accuracy/high resolution mass spectrometry, was explored to identify a paired rule for the presence of isomeric ether phospholipid molecular species in cellular lipidomes. The rule predicts that if an ether phospholipid A′-B is present in a lipidome, its isomeric counterpart B′-A is also present (where the ′ represents an ether linkage). The biochemical basis of this rule results from the fact that the enzymes which participate in either the sequential oxidation of aliphatic alcohols to fatty acids, or the reduction of long chain fatty acids to aliphatic alcohols (metabolic precursors of ether lipid synthesis), are not entirely selective with respect to acyl chain length or degree of unsaturation. Moreover, the enzymatic selectivity for the incorporation of different aliphatic chains into the obligatory precursor of ether lipids (i.e., 1-O-alkyl-glycero-3-phosphate) is also limited.

Conclusions/Significance

This intrinsic amplification of the number of lipid molecular species present in biological membranes predicted by this rule and demonstrated in this study greatly expands the number of ether lipid molecular species present in cellular lipidomes. Application of this rule to mass spectrometric analyses provides predictive clues to the presence of specific molecular species and greatly expands the number of identifiable and quantifiable ether lipid species present in biological samples. Through appropriate alterations in the database, use of the paired rule increases the number of identifiable metabolites in metabolic networks, thereby facilitating identification of biomarkers presaging disease states.  相似文献   
1000.
Objective: The objective of this study was to investigate the association among adiposity, insulin resistance, and inflammatory markers [high‐sensitivity C‐reactive protein (hs‐CRP), interleukin (IL)‐6, and tumor necrosis factor (TNF)‐α] and adiponectin and to study the effects of exercise training on adiposity, insulin resistance, and inflammatory markers among obese male Korean adolescents. Research Methods and Procedures: Twenty‐six obese and 14 lean age‐matched male adolescents were studied. We divided the obese subjects into two groups: obese exercise group (N = 14) and obese control group (N = 12). The obese exercise group underwent 6 weeks of jump rope exercise training (40 min/d, 5 d/wk). Adiposity, insulin resistance, lipid profile, hs‐CRP, IL‐6, TNF‐α, and adiponectin were measured before and after the completion of exercise training. Results: The current study demonstrated higher insulin resistance, total cholesterol, LDL‐C levels, triglyceride, and inflammatory markers and lower adiponectin and HDL‐C in obese Korean male adolescents. Six weeks of increased physical activity improved body composition, insulin sensitivity, and adiponectin levels in obese Korean male adolescents without changes in TNF‐α, IL‐6, and hs‐CRP. Discussion: Obese Korean male adolescents showed reduced adiponectin levels and increased inflammatory cytokines. Six weeks of jump rope exercise improved triglyceride and insulin sensitivity and increased adiponectin levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号